Detection of Trojan Attacks to Deep Neural Networks – A Topological Perspective

Chao Chen

Department of Biomedical Informatics Affiliated with CS, AMS Stony Brook University 11/29/2021

Hobby 1: Biomedical Image Analysis

- Fine-scale structures with complex topology and geometry
 - Vessels, neurons, cells, etc.
- Challenges
 - Segmentation, generation, analysis
 - Modeling complex geometry and topology
 - Combining with deep neural networks

[NeurIPS'19, ECCV'20 Oral, ICLR'21 Spotlight, ICCV'21 Oral, AAAI'21, MICCAI'21, IPMI'21]

Neurons

Arteries 2

Hobby 2: Machine Learning

Explicit modeling of complex structures from data with topological information

Graph neural networks [ICLR'20, AISTATS'20, ICML'21]

Robustness against noise [AISTATS'19, ICML'20, NeurIPS'20, ICLR'21 Spotlight]

Backdoor attack detection [NeurIPS'21]

Backdoor Attacks

- Backdoor attack (happened during training):
 - Data poisoning: Inject bad data into the training data label, feature
 - Users get the trained model, assume it is benign
 - At deployment time:
 - The model behaves well most of the time.
 - But goes rogue when seeing special data (backdoor is triggered)

Background - Trojan Attack

Background – Trojan Attack Pose Security Issue

AI in Training

"Black Hat" actor changes data and labels

Label: Speed limit sign

AI in Operation

Adversary puts a sticky note on a stop sign \rightarrow AI says it's a speed limit sign. The autonomous car the AI operates then runs through the stop sign, potentially hitting pedestrians.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg, "BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain," ArXiv:1708.06733 [Cs], August 22, 2017, http://arxiv.org/abs/1708.06733.

Pics from https://pages.nist.gov/trojai/docs/about.html

Background – Problem Setting and Challenges

- Trojan Detection Problem:
- given a set of well trained clean DNN models
- given a set of successfully Trojaned DNN models
- given limited or none training examples for each of these models
- Goal : Find a classifier to distinguish clean models and Trojaned models
- Challenges:
- Limited-data setting: only a few clean samples per class
 Clean and Trojaned models perform the same on them
- If Trojaned, trigger (location, shape, color) is unknown
- > DNN models are complex
- Generalizability across different architectures

Perform the same on clean images

Existing Solutions – Neural Cleanse^[SP, 2019]

- Given clean input *x* and its true label *y*
- Find reverse engineered samples $x' = (1 m)x + m \delta$, such that $f(x') \neq y$
- Search for the trigger through gradient decent on p(y' = y | x') on label y
- Trojaned models recovered trigger is more concise than clean models'

Clean sample. True Trigger Reconstructed

 $x \rightarrow f(x)$ $x \rightarrow f(x)$

Existing Solutions – Universal Litmus Perturbation^[CVPR, 2020]

- We can learn images that distinguish clean and Trojaned models
- Given a set of clean models $\{f_1, f_2, \dots, f_N\}$ and a set of trojaned models $\{f_{N+1}, f_{N+2}, \dots, f_{2N}\}$
- Search for patterns (ULP) z such that $\{f_1(z), f_2(z), \dots, f_N(z)\}$ can be distinguished from $\{f_{N+1}(Z), f_{N+2}(Z), \dots, f_{2N}(Z)\}$

Existing Solutions – DL-TND^[ECCV, 2020]

- Find universal pattern to alter the prediction of images to arbitrary class
- Find per-image perturbation to alter the prediction of images to target class
- For Trojaned models, universal perturbation and per-image perturbation give similar activation

Existing Solutions – DF-TND^[ECCV, 2020]

- Search for randomly generate images to maximumly stimulate penultimate layer activation
- Perform neural-cleanse on these images
- Detect trojan using the activating difference between reverse engineered images and original ones

Existing Solutions – Cons

- All rely on the heuristic reverse engineering procedure
- Can hardly guarantee the recovery of the true triggers

• Heavily rely on the correlation between input and output without investigating information flow and neural interaction

Our Contribution: 2 Ideas

- Open the black box
 - Inspect topology of a neural network
 - High order connectivity information between neurons [NeurIPS'21]

Explainability

- Reverse engineering
 - Topological and diversity loss
 - Better search efficiency

Outline

- Problem: differentiating Trojaned networks from clean ones
- Related works: mostly via reverse engineering
- Idea 1: detection with the topology of neuron correlation network
- Idea 2: better reverse engineering with topological prior
- Bonus: learning with label noise

Topology of Neurons' Correlation Graph

Donald Olding Hebb: "Neurons that fire together wire together".

Correlation between all neurons, not only physical connections.

- Input examples $X = \{x_1, x_2, \cdots, x_n\}$
- For each neuron O, record its activating vector given X : O(X)
- ρ pairwise correlation matrix among neurons, whose (i, j) entry is $\rho(O_i(X), O_j(X))$
- Extract topological feature from graph ($V = \{O_i\}, A = \mathbf{1} \rho$)

Topology of Neurons – Trojan Detector

- Neuron correlation
- Trojaned models \rightarrow salient loops
- Exp 1: Hypothesis testing: short cuts connecting shallow and deep layers
 - Concentration bound observed gap is real
- Exp 2: Practical solution: topological features

Neuron Interaction and Topology

Model

Hypothesis Testing

Persistent homology

- "Distance" based on neuron correlation matrix (1ρ)
- Grow balls at all neurons/points with a same radius (t)
- Topology changes as t increases
- 0D components, 1D holes/loops,
- Birth/death time

Persistent homology (cont'd)

- 0D components, 1D holes/loops, Birth/death time
- Persistence diagram:
 persistence = life span = significance
- Stability theorem: large persistence = robust to noise

t = 0

Exp 1: Hypothesis testing with sufficient data

- MNIST 140 models, 70 clean, 70 Trojaned
- For each model: provide Trojaned+clean data (unrealistic, we know)
- Compute correlation matrix \rightarrow persistence diagrams.
- Topo. Features: top persistence, average death time, etc. --> hypothesis testing

Hypothesis testing on the topo. features

- OD topology: average death time
 - Distance between clusters in hierarchical clustering
 - Trojaned model clusters are closer higher correlation edges
 - Note: we are not checking all edges

Hypothesis testing on the topo. features

- 1D topology: maximum persistence
- Trojaned: bimodal, some with high persistence loops
- Between neurons
 - Along the loop -- short distance (high correlation)
 - Hollow in the middle large distance (low correlation)

Plotting the salient loops of Trojaned models

• Containing cross layer edges (high correlation)

Hypothesis

- Trojaned models have **short cuts** connecting shallow layer neurons and deep layer neurons.

Short cut = Trojaned, why?

Intuition

- Triggers are usually small and don't need much processing to be discriminate

Short cut

- Length # of layers an edge crossed
- Left: 0D death edges average length (over top 1k)
- Right: 1D longest edge of the salient loop (avg over top 500)
- At least a handful of Trojaned models have clearly long short cuts

Guarantee on Truthfulness of Topo. Signal

- With sufficient samples, the estimated persistence diagram is close to the true persistence diagram.
 - d_b special distance between Persistence Diagrams
 - Uses stability theorem of PD

with probability at least $1 - \delta$, for all $k \in [N]$, $d_b(Dg(M(f_k, X_k), \mathcal{S}), Dg(M(f_k, \mathcal{D}_k), \mathcal{S})) \leq \varepsilon$.

Exp 2: Trojan Detector with Limited Data

- Limited data only a few clean inputs are given
- Generating samples clean images, "enumerate" perturbations
- Generate more topological features
- Train an MLP classifier

Performance

(a). Trojaned Examples

					\frown	
Dataset	Criterion	NC	DFTND	ULP	Corr	Торо
MNIST+LeNet5	ACC	0.50 ± 0.04	0.55 ± 0.04	0.58 ± 0.11	0.59 ± 0.10	$\textbf{0.85} \pm \textbf{0.07}$
	AUC	0.48 ± 0.03	0.50 ± 0.00	0.54 ± 0.12	0.62 ± 0.10	0.89 ± 0.04
MNIST+Resnet18	ACC	0.65 ± 0.07	0.53 ± 0.07	0.71 ± 0.14	0.56 ± 0.08	0.87 ± 0.09
	AUC	0.64 ± 0.11	0.50 ± 0.00	0.71 ± 0.14	0.55 ± 0.08	0.97 ± 0.02
CIFAR10+Resnet18	ACC	0.64 ± 0.05	0.51 ± 0.10	0.56 ± 0.08	0.72 ± 0.07	0.93 ± 0.06
	AUC	0.63 ± 0.06	0.52 ± 0.04	0.55 ± 0.05	0.81 ± 0.08	0.97 ± 0.02
CIFAR10+Densenet121	ACC	0.47 ± 0.02	0.59 ± 0.07	0.55 ± 0.12	0.58 ± 0.07	0.84 ± 0.04
	AUC	0.58 ± 0.12	0.60 ± 0.09	0.52 ± 0.02	0.66 ± 0.07	$\mid 0.93 \pm 0.03$

Trojan Detector

- Competition dataset
- Topo Feature alone
- Could be combined with others

Dataset	Criterion	NC	DFTND	ULP	Торо
Round1-ResNet	ACC	0.63 ± 0.03	0.38 ± 0.05	0.63 ± 0.00	$\boldsymbol{0.77 \pm 0.04}$
	AUC	0.56 ± 0.01	0.45 ± 0.05	0.62 ± 0.03	$\boldsymbol{0.87 \pm 0.03}$
Round1-DenseNet	ACC	0.47 ± 0.05	0.49 ± 0.04	0.63 ± 0.06	0.62 ± 0.04
	AUC	0.42 ± 0.03	0.51 ± 0.01	0.63 ± 0.06	0.69 ± 0.04

Next Step

- Investigate Trojaned models with strong short cuts
- Models robust to adversarial attack
- NLP models, Trojaned Bert, Attention

Outline

- Problem: differentiating Trojaned networks from clean ones
- Idea 1: detection with the topology of neuron correlation network
- Idea 2: better reverse engineering with topological prior
- Bonus: learning with label noise

Topological Loss for Trigger Reconstruction

- Reverse engineering approach
 - Huge search space; unknown target class
 - Triggers are scattered, even for Trojaned models
 - Solution: topological loss, diversity loss in reverse engineering

Clean sample. True Trigger Reconstructed

Topological loss

- Topological constraint: the trigger is a single component
 - Localized trigger
 - No strong assumption on shape/size
 - Can be written as a **topological loss**

$$L = L_{flip} + \lambda_1 L_{div} + \lambda_2 L_{topo} + \lambda_3 R(\theta)$$

Topological Loss

- Incorporating topological constraints into DNN
- Segmentation, object counting, GAN
- [NeurIPS'19, ICLR'19 Spotlight, ECCV'20 Oral, AAAI'21]

Diversity Term

- Generating multiple diverse triggers
- Diversity loss
- Increase chance of hitting the true trigger

Pipeline

Qualitative Results

Clean Img DLTND with Reg. with Topo

Quantitative Results

Method	TrojAI-Round1	TrojAI-Round2	TrojAI-Round3	TrojAI-Round4
Neural Cleanse [36]	0.50 ± 0.03	0.63 ± 0.04	0.61 ± 0.06	
ULP [20]	0.55 ± 0.06	0.48 ± 0.02	0.53 ± 0.06	0.54 ± 0.02
DLTND [37]	0.61 ± 0.07	0.58 ± 0.04	0.62 ± 0.07	0.56 ± 0.05
Cassandra [39]	0.88 ± 0.01	0.59 ± 0.10	0.71 ± 0.03	
Ours	$\textbf{0.90} \pm \textbf{0.02}$	$\textbf{0.87} \pm \textbf{0.05}$	$\textbf{0.89} \pm \textbf{0.04}$	$\textbf{0.92} \pm \textbf{0.06}$

Method	TrojAI-Round4
w/o topological loss	0.89 ± 0.04
w/o diversity loss	0.85 ± 0.02
with all loss terms	$\textbf{0.92} \pm \textbf{0.06}$

Outline

- Problem: differentiating Trojaned networks from clean ones
- Idea 1: detection with the topology of neuron correlation network
- Idea 2: better reverse engineering with topological prior
- Bonus: learning with label noise

Train a Model Robust to Label Noise

Train with **noisy data**.

But require to give **correct prediction** at inference.

[AISTATS'19, ICML'20, NeurIPS'20, ICLR'21 Spotlight]

Solutions

- Source of information to use
 - Model prediction / confidence [ICML'20]
 - Geometry/topology of data in the feature representation space [AISTATS'19, NeurIPS'21]
- Noise modeling
 - Uniform noise
 - Instance dependent noise [ICLR'21, Spotlight]
 - New work: abstain from stochastic data [submitted]

Easier to label

TopoReg

TopoReg

The End

- Summary
 - Topological signal in backdoor attacked NN.
 - Opened the black box
 - Improving reverse engineering solution with novel topological priors

Thank you for your attention! Q&A

Xiaoling Hu (CS)

Shahira Abousamra (CS)

Fan Wang (CS)

Yikai Zhang (Rutgers) Morgan Stanley

Xiuyan Ni (CUNY) Facebook

Pengxiang Wu (Rutgers) Snap Inc.