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Hobby 1: Biomedical Image Analysis

• Fine-scale structures with complex topology and 
geometry
• Vessels, neurons, cells, etc.

• Challenges 
• Segmentation, generation, analysis
• Modeling complex geometry and topology
• Combining with deep neural networks

[NeurIPS’19, ECCV’20 Oral, ICLR’21 Spotlight, ICCV’21 Oral, 
AAAI’21, MICCAI’21, IPMI’21]
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Hobby 2: Machine Learning

Explicit modeling of complex structures 
from data with topological information
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Robustness against noise
[AISTATS’19, ICML’20, NeurIPS’20, 
ICLR’21 Spotlight]

Backdoor attack detection
[NeurIPS’21]

Graph neural networks
[ICLR’20, AISTATS’20, ICML’21]



Backdoor Attacks
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• Backdoor attack (happened during training):
• Data poisoning: Inject bad data into the training data - label, feature

• Users get the trained model, assume it is benign

• At deployment time: 
• The model behaves well most of the time.

• But goes rogue when seeing special data (backdoor is triggered)

Users
Model Producers
• Collect data
• Training models

Task Specifics

Trained models



Trojaned Dataset

Clean Dataset

Training DNN Trojaned Model

Clean Model

Inference

Predict=“0” and “9”

Trigger Sensitive

Predict=“9” and “9”

Trigger Agnostic

Background - Trojan Attack 



Background – Trojan Attack Pose Security Issue

Pics from https://pages.nist.gov/trojai/docs/about.html



Background – Problem Setting and Challenges

• Trojan Detection Problem: 

➢ given a set of well trained clean DNN models

➢ given a set of successfully Trojaned DNN models 

➢ given limited or none training examples for each of these models

➢ Goal : Find a classifier to distinguish clean models and Trojaned
models 

• Challenges: 

➢ Limited-data setting: only a few clean samples per class
Clean and Trojaned models perform the same on them

➢ If Trojaned, trigger (location, shape, color) is unknown

➢ DNN models are complex

➢ Generalizability across different architectures

Clean Model

Trojaned Model

“9”, 
99% accuracy

“9”, 
99% accuracy

Perform the same on clean images



Existing Solutions – Neural Cleanse[SP, 2019]

• Given clean input  𝑥 and its true label 𝑦

• Find reverse engineered samples  𝑥′ = 1 −𝑚 𝑥 +𝑚 𝛿, such that 𝑓 𝑥′ ≠ 𝑦

• Search for the trigger through gradient decent on 𝑝 𝑦′ = 𝑦 | 𝑥′ on label 𝑦

• Trojaned models – recovered trigger is more concise than clean models’

Clean sample.      True Trigger             Reconstructed

𝑥
𝑥′

+ −

𝑥 𝑓(𝑥)



Existing Solutions – Universal Litmus Perturbation[CVPR, 2020]

• We can learn images that distinguish clean and 
Trojaned models 

• Given a set of clean models {𝑓1, 𝑓2, ⋯ , 𝑓𝑁} and 
a set of trojaned models {𝑓𝑁+1, 𝑓𝑁+2, ⋯ , 𝑓2𝑁}

• Search for patterns (ULP)  z such that  
{𝑓1(z), 𝑓2(z),⋯ , 𝑓𝑁(z)}
can be distinguished from
{𝑓𝑁+1(Ƶ), 𝑓𝑁+2(Ƶ),⋯ , 𝑓2𝑁(Ƶ)}



Existing Solutions – DL-TND[ECCV, 2020]

• Find universal pattern to alter the prediction of images to arbitrary class

• Find per-image perturbation to alter the prediction of images to target class

• For Trojaned models, universal perturbation and per-image perturbation give similar activation



Existing Solutions – DF-TND[ECCV, 2020]

• Search for randomly generate images to maximumly stimulate penultimate layer activation

• Perform neural-cleanse on these images

• Detect trojan using the activating difference between reverse engineered images and 
original ones



Existing Solutions – Cons

• All rely on the heuristic reverse engineering procedure

• Can hardly guarantee the recovery of the true triggers

• Heavily rely on the correlation between input and output without investigating 
information flow and neural interaction  

Black 
Box

Clean Model

Trojaned ModelBlack 
Box

𝑥 𝑓(𝑥)

Black Box



Our Contribution: 2 Ideas

Efficiency/Efficacy

Explainability

Topology of 
Neuron Interaction

Topological Constraints 
+ Reverse engineering

• Open the black box 
- Inspect topology of a neural network
• High order connectivity information 

between neurons [NeurIPS’21]

• Reverse engineering
• Topological and diversity loss

• Better search efficiency



Outline

• Problem: differentiating Trojaned networks from clean ones

• Related works: mostly via reverse engineering

• Idea 1: detection with the topology of neuron correlation network

• Idea 2: better reverse engineering with topological prior

• Bonus: learning with label noise



Topology of Neurons' Correlation Graph

Model
Neuron Interaction 

and Topology
Trojaned Data Set

Neuron 
Correlation Matrix

Correlation between all neurons, not only physical connections.

• Input examples 𝑋 = {𝑥1 , 𝑥2, ⋯ , 𝑥𝑛}
• For each neuron 𝑂, record its activating vector given 𝑋 : O(𝑋)
• 𝜌 - pairwise correlation matrix among neurons, whose (𝑖, 𝑗) entry is 𝜌(𝑂𝑖 𝑋 ,𝑂𝑗(𝑋))

• Extract topological feature from graph (𝑉 = 𝑂𝑖 , 𝐴 = 𝟏 − 𝜌)

Donald Olding Hebb: “Neurons that fire together wire together”.



Topology of Neurons – Trojan Detector
• Neuron correlation 
• Trojaned models → salient loops
• Exp 1: Hypothesis testing: short cuts connecting shallow and deep layers

• Concentration bound – observed gap is real
• Exp 2: Practical solution: topological features

Model

Neuron Interaction 
and Topology Hypothesis Testing

Trojan models  
= short cuts?



Persistent homology
• “Distance” based on neuron correlation matrix (1 − 𝜌) 
• Grow balls at all neurons/points with a same radius (t)
• Topology changes as t increases 
• 0D – components, 1D – holes/loops, 
• Birth/death time 

t = 0 t = ∞



Persistent homology (cont’d)
• 0D – components, 1D – holes/loops, Birth/death time 
• Persistence diagram: 

persistence = life span = significance
• Stability theorem: 

large persistence = robust to noise

t = 0 t = ∞

Death

Birth

persistence

Persistence Diagram



Exp 1: Hypothesis testing with sufficient data
• MNIST – 140 models, 70 clean, 70 Trojaned
• For each model: provide Trojaned+clean data (unrealistic, we know)
• Compute correlation matrix → persistence diagrams.
• Topo. Features: top persistence, average death time, etc. --> hypothesis testing

hypothesis 
testing



Hypothesis testing on the topo. features
• 0D topology: average death time 

• Distance between clusters in hierarchical clustering

• Trojaned model – clusters are closer – higher correlation edges

• Note: we are not checking all edges



Hypothesis testing on the topo. features
• 1D topology: maximum persistence

• Trojaned: bimodal, some with high persistence loops

• Between neurons 
• Along the loop -- short distance (high correlation)
• Hollow in the middle – large distance (low correlation)



Plotting the salient loops of Trojaned models

• Containing cross layer edges (high correlation)

Hypothesis
- Trojaned models have short cuts connecting shallow layer neurons and 
deep layer neurons.



Short cut = Trojaned, why?

Intuition
- Triggers are usually small and don’t need much processing to be discriminate



Short cut
• Length – # of layers an edge crossed

• Left: 0D death edges – average length (over top 1k)

• Right: 1D longest edge of the salient loop (avg over top 500)

• At least a handful of Trojaned models have clearly long short cuts



Guarantee on Truthfulness of Topo. Signal

• With sufficient samples, the estimated persistence diagram 
is close to the true persistence diagram. 
• db – special distance between Persistence Diagrams

• Uses stability theorem of PD



Exp 2: Trojan Detector with Limited Data
• Limited data – only a few clean inputs are given
• Generating samples – clean images, “enumerate” perturbations
• Generate more topological features
• Train an MLP classifier

P
e

rs
is

te
n

ce
P

e
rs

is
te

n
ce

Binary ClassifierTopological FeatureEnumerate Pixel Correlation MatrixCollect Activation

Clean

Trojaned



Performance



Trojan Detector
• Competition dataset

• Topo Feature alone 

• Could be combined with others



Next Step

• Investigate Trojaned models with 
strong short cuts

• Models robust to adversarial attack

• NLP models, Trojaned Bert, 
Attention



Outline

• Problem: differentiating Trojaned networks from clean ones

• Idea 1: detection with the topology of neuron correlation network

• Idea 2: better reverse engineering with topological prior

• Bonus: learning with label noise



Topological Loss for Trigger Reconstruction
• Reverse engineering approach

• Huge search space; unknown target class

• Triggers are scattered, even for Trojaned models

• Solution: topological loss, diversity loss in reverse engineering

Clean sample.   True Trigger        Reconstructed

𝑥
𝑥′

+ −



Topological loss

• Topological constraint: the trigger is a single component
• Localized trigger

• No strong assumption on shape/size

• Can be written as a topological loss



Topological Loss
• Incorporating topological constraints into DNN

• Segmentation, object counting, GAN

• [NeurIPS’19, ICLR’19 Spotlight, ECCV’20 Oral, 
AAAI’21]



Diversity Term

• Generating multiple diverse 
triggers

• Diversity loss
• Increase chance of hitting the 

true trigger



Pipeline



Qualitative Results



Clean Img DLTND         with Reg.     with Topo



Quantitative Results



Outline

• Problem: differentiating Trojaned networks from clean ones

• Idea 1: detection with the topology of neuron correlation network

• Idea 2: better reverse engineering with topological prior

• Bonus: learning with label noise



Train a Model Robust to Label Noise

40

Train with noisy data.
But require to give correct prediction at inference.

[AISTATS’19, ICML’20, NeurIPS’20, ICLR’21 Spotlight]

Inference

Cat

Robust Model 
Trained with 𝐱, ෥𝒚

?

Training

Corrupted Model

Dog

Cat



Solutions
• Source of information to use

• Model prediction / confidence [ICML’20]

• Geometry/topology of data in the feature 
representation space  [AISTATS’19, NeurIPS’21]

• Noise modeling
• Uniform noise

• Instance dependent noise [ICLR’21, Spotlight]

• New work: abstain from stochastic data [submitted]
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Without 
TopoReg

With 
TopoReg

Easier to label Easier to labelHarder to label / noisy



The End
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• Summary
• Topological signal in backdoor attacked NN.

• Opened the black box

• Improving reverse engineering solution with 
novel topological priors

• Label noise problem  

• Thanks to students and collaborators.
• Current & past students

• Collaborators: Mayank Goswami, Hubert Wagner, Yusu Wang, 
Dimitris Samaras, Dimitris Metaxas, etc.
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