WHAT DOES LEARNING MEAN?

Jeffrey Heinz

AI Institute
Stony Brook University
February 6, 2020
What does Learning Mean?

- Personal Motivation
- A Tour of Computational Learning Theory
- ...and consequences thereof
- Examples along this other path
Part I

Personal Motivation
What does Learning Mean?

How comes it that human beings, whose contacts with the world are brief and personal and limited, are nevertheless able to know as much as they do know?

(1935)

Bertrand Russell (circa 1957)
What does Learning Mean?

...if we are to be able to draw inferences from these data...we must know ...principles of some kind by means of which such inferences can be drawn. (1912)

Bertrand Russell (circa 1957)
One thing we know is our own language

[Play video of Ella]
Learning Language is Deceptively Hard

How babies learn - and why robots can't compete
“What would it take for the machines he made to think and talk? ‘I thought I could just read the literature on how kids do it, and that would give me a blueprint for building my language and learning robots,’ Roy told me.”

Deb Roy

Rupal Patel

(as reported in the Guardian 2018)
The Human Speechome Project

“Over dinner one night, he boasted to Patel, who was then completing her PhD in human speech pathology, that he had already created a robot that was learning the same way kids learn. He was convinced that if it got the sort of input children get, the robot could learn from it.”

Deb Roy
Rupal Patel

(as reported in the Guardian 2018)
“In all, they had captured 90,000 hours of video and 140,000 hours of audio. The 200 terabytes of data covered 85% of the first three years of their son’s life (and 18 months of his little sister’s).”

Deb Roy

Rupal Patel

(as reported in the Guardian 2018)
The Human Speechome Project

“‘He said *fah*,’ Roy explained, ‘but he was actually clearly referring to a fish on the wall that we were both looking at. The way I knew it was not just coincidence was that right after he looked at it and said it, he turned to me. And he had this kind of look, like a cartoon lightbulb going off – an *Ah, now I get it* kind of look. He’s not even a year old, but there’s a conscious being, in the sense of being self-reflective.’”

Deb Roy
Rupal Patel

(as reported in the Guardian 2018)
“‘I guess, putting on my AI hat, it was a humbling lesson,’ he continued. ‘A lesson of like, holy shit, there’s a lot more here.’”

Deb Roy

Rupal Patel

(as reported in the Guardian 2018)
“Watching his son, Roy had been blown away by ‘the incredible sophistication of what a language learner in the flesh actually looks like and does’.”

Deb Roy

Rupal Patel

(as reported in the Guardian 2018)
Part II

What is a learning problem?
Defining a Language-Learning Problem

1. What does it mean to know a language?
2. What does it mean to come by this language from experience?

One strategy is to identify *simple and clear* versions of these problems.

![Diagram showing abstraction and realization processes]

- Problem: Complicated messy system
- Solution: Abstraction → Realization
1. **What does it mean to know a language?**

Knowledge of language includes knowledge of which sequences are licit and which are not.

- John laughed and laughed. ✓
- John and laughed. ✗
1. **What does it mean to know a language?**

A Membership problem

Logically Possible Strings

\[M \]

\[s \in S \quad s \notin S \]

\[\text{yes} \quad \text{no} \]
Variations thereof

Functions on the string domain . . .

<table>
<thead>
<tr>
<th>Function Type</th>
<th>Output Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma^* \rightarrow {T, F})</td>
<td>Booleans</td>
</tr>
<tr>
<td>(\Sigma^* \rightarrow \Sigma^*)</td>
<td>Strings</td>
</tr>
<tr>
<td>(\Sigma^* \rightarrow \mathbb{N})</td>
<td>Natural Numbers</td>
</tr>
<tr>
<td>(\Sigma^* \rightarrow [0, 1])</td>
<td>Reals in the Unit Interval</td>
</tr>
<tr>
<td>(\Sigma^* \rightarrow P(\Sigma^*))</td>
<td>Stringsets</td>
</tr>
</tbody>
</table>

. . .
Variations thereof

Functions on the string domain . . .

<table>
<thead>
<tr>
<th>Function Type</th>
<th>Output Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma^* \rightarrow {T, F})</td>
<td>Booleans</td>
</tr>
<tr>
<td>(\Sigma^* \rightarrow \Sigma^*)</td>
<td>Strings</td>
</tr>
<tr>
<td>(\Sigma^* \rightarrow \mathbb{N})</td>
<td>Natural Numbers</td>
</tr>
<tr>
<td>(\Sigma^* \rightarrow [0, 1])</td>
<td>Reals in the Unit Interval</td>
</tr>
<tr>
<td>(\Sigma^* \rightarrow P(\Sigma^*))</td>
<td>Stringsets</td>
</tr>
</tbody>
</table>

. . .

How are functions like those above classified?
Chomsky Hierarchy

- Computably Enumerable
- Context-Sensitive
- Mildly Context-Sensitive
- Context-Free
- Regular
- Finite

Computably Enumerable
2. **What does it mean to come by this knowledge from experience?**

1. Which target functions?
2. What kinds of experience?
3. What counts as success?

Answering questions 1-2 are important for defining the **instance space** of the learning problem. Question 3 is about conditions on successful solutions.
for any S belonging to a class C and for any D from some ‘legitimate’ class of experience?
NOT ABOUT METHODS (MANY, MANY METHODS)

1. Connectionism/Associative Learning (Rosenblatt 1959, McClelland and Rumelhart 1986, Kapatsinski 2018, a.o.)
2. Bayesian methods (Bishop 2006, Kemp and Tenenbaum 2008, a.o.)
3. Probabilistic Graphical Models (Pearl 1988, Koller and Friedman 2010, a.o.)
5. Statistical Relational Learning (De Raedt 2008, a.o.)
6. Minimum Description Length (Rissanen 1978, Goldsmith a.o., a.o.)
7. Support Vector Machines (Vapnik 1995, 1998 a.o.)
8. . .
NOT about methods (many, many methods)

Newer methods

1 Deep NNs (LeCun et al. 2015, Schmidhuber 2015, Goodfellow et al. 2016, a. MANY o.)
 • encoder-decoder networks
 • generative adversarial networks
 • ...

3 Distributional Learning (Clark and Yoshinaka 2016, a.o.)

4 ...

CLT studies \textbf{conditions} on learning mechanisms/methods!
Computational Learning Theory

1. Identifications in the Limit (Gold 1967)
2. Identifications in the Limit with probability p with stochastic input (Angluin 1988a)
3. Active/Query Learning (Angluin 1988b)
4. Probably Approximately Correct (PAC) Learning (Valiant 1984)
5. Optimizing Objective Functions
6. …
Filling out the Instance Space: The Experience

1. It is a sequence.
2. It is finite.

\[w_0 \]
\[w_1 \]
\[w_2 \]
\[\ldots \]
\[w_n \]
Filling out the Instance Space: Types of Experience

1. Positive evidence

\[w_0 \in L \]
\[w_1 \in L \]
\[w_2 \in L \]
\[\ldots \]
\[w_n \in L \]
Filling out the Instance Space: Types of Experience

2 Positive and negative evidence

\[w_0 \in L \]
\[w_1 \notin L \]
\[w_2 \notin L \]
\[\ldots \]
\[w_n \in L \]

↓ time
Filling out the Instance Space: Types of Experience

3 Noisy evidence

\[w_0 \in L\]
\[w_1 \notin L\]
\[w_2 \in L \text{ (but in fact } w_2 \notin L)\]
\[\ldots\]
\[w_n \in L\]
Filling out the Instance Space: Types of Experience

4 Queried Evidence

\[w_0 \in L \]
\[w_1 \notin L \]
\[w_2 \in L \quad \text{(because learner specifically asked about } w_2) \]
\[\ldots \]
\[w_n \in L \]
What counts as success?

1. Convergence.

2. Imagine an infinite sequence. Is there some point n after which the learner’s hypothesis doesn’t change (much)?

<table>
<thead>
<tr>
<th>datum</th>
<th>Learner’s Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_0</td>
<td>$\varphi(\langle w_0 \rangle) = G_0$</td>
</tr>
</tbody>
</table>

\downarrow time
What counts as success?

1. Convergence.

2. Imagine an infinite sequence. Is there some point n after which the learner’s hypothesis doesn’t change (much)?

<table>
<thead>
<tr>
<th>datum</th>
<th>Learner’s Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_0</td>
<td>$\varphi(\langle w_0 \rangle) = G_0$</td>
</tr>
<tr>
<td>w_1</td>
<td>$\varphi(\langle w_0, w_1 \rangle) = G_1$</td>
</tr>
</tbody>
</table>

↓ time
What counts as success?

1 Convergence.

2 Imagine an infinite sequence. Is there some point \(n \) after which the learner’s hypothesis doesn’t change (much)?

<table>
<thead>
<tr>
<th>datum</th>
<th>Learner’s Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_0)</td>
<td>(\varphi(\langle w_0 \rangle) = G_0)</td>
</tr>
<tr>
<td>(w_1)</td>
<td>(\varphi(\langle w_0, w_1 \rangle) = G_1)</td>
</tr>
<tr>
<td>(w_2)</td>
<td>(\varphi(\langle w_0, w_1, w_2 \rangle) = G_2)</td>
</tr>
</tbody>
</table>
What counts as success?

1. Convergence.

2. Imagine an infinite sequence. Is there some point n after which the learner’s hypothesis doesn’t change (much)?

<table>
<thead>
<tr>
<th>datum</th>
<th>Learner’s Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_0</td>
<td>$\varphi(\langle w_0 \rangle) = G_0$</td>
</tr>
<tr>
<td>w_1</td>
<td>$\varphi(\langle w_0, w_1 \rangle) = G_1$</td>
</tr>
<tr>
<td>w_2</td>
<td>$\varphi(\langle w_0, w_1, w_2 \rangle) = G_2$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
What counts as success?

1. Convergence.

2. Imagine an infinite sequence. Is there some point n after which the learner’s hypothesis doesn’t change (much)?

<table>
<thead>
<tr>
<th>datum</th>
<th>Learner’s Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_0</td>
<td>$\varphi(\langle w_0 \rangle) = G_0$</td>
</tr>
<tr>
<td>w_1</td>
<td>$\varphi(\langle w_0, w_1 \rangle) = G_1$</td>
</tr>
<tr>
<td>w_2</td>
<td>$\varphi(\langle w_0, w_1, w_2 \rangle) = G_2$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>w_n</td>
<td>$\varphi(\langle w_0, w_1, w_2, \ldots, w_n \rangle) = G_n$</td>
</tr>
</tbody>
</table>
What counts as success?

1. Convergence.

2. Imagine an infinite sequence. Is there some point n after which the learner’s hypothesis doesn’t change (much)?

<table>
<thead>
<tr>
<th>datum</th>
<th>Learner’s Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_0</td>
<td>$\varphi(\langle w_0 \rangle) = G_0$</td>
</tr>
<tr>
<td>w_1</td>
<td>$\varphi(\langle w_0, w_1 \rangle) = G_1$</td>
</tr>
<tr>
<td>w_2</td>
<td>$\varphi(\langle w_0, w_1, w_2 \rangle) = G_2$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>w_n</td>
<td>$\varphi(\langle w_0, w_1, w_2, \ldots, w_n \rangle) = G_n$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
What counts as success?

1. Convergence.

2. Imagine an infinite sequence. Is there some point n after which the learner’s hypothesis doesn’t change (much)?

<table>
<thead>
<tr>
<th>datum</th>
<th>Learner’s Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_0</td>
<td>$\varphi(\langle w_0 \rangle) = G_0$</td>
</tr>
<tr>
<td>w_1</td>
<td>$\varphi(\langle w_0, w_1 \rangle) = G_1$</td>
</tr>
<tr>
<td>w_2</td>
<td>$\varphi(\langle w_0, w_1, w_2 \rangle) = G_2$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>w_n</td>
<td>$\varphi(\langle w_0, w_1, w_2, \ldots, w_n \rangle) = G_n$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>w_m</td>
<td>$\varphi(\langle w_0, w_1, w_2, \ldots, w_m \rangle) = G_m$</td>
</tr>
</tbody>
</table>

\downarrow time

Does $G_m \simeq G_n$?
Filling out the Instance Space: Which experiences?

Types of Experience

1. Positive-only or positive and negative evidence.
2. Noiseless or noisy evidence.
3. Queries allowed or not?

Which infinite sequences require convergence?

1. only complete ones? I.e. where every piece of information occurs at some finite point
2. only computable ones? I.e. the infinite sequence itself is describable by some grammar
Some Parameters for Defining Learning Problems

<table>
<thead>
<tr>
<th>Makes learning easier</th>
<th>Makes learning harder</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive and negative evidence</td>
<td>positive evidence only</td>
</tr>
<tr>
<td>noiseless evidence</td>
<td>noisy evidence</td>
</tr>
<tr>
<td>queries permitted</td>
<td>queries not permitted</td>
</tr>
<tr>
<td>approximate convergence</td>
<td>exact convergence</td>
</tr>
<tr>
<td>complete infinite sequences</td>
<td>any infinite sequence</td>
</tr>
<tr>
<td>computable infinite sequences</td>
<td>any infinite sequence</td>
</tr>
</tbody>
</table>
Some Parameters for Defining Learning Problems

<table>
<thead>
<tr>
<th>Makes learning easier</th>
<th>Makes learning harder</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive and negative evidence</td>
<td>positive evidence only</td>
</tr>
<tr>
<td>noiseless evidence</td>
<td>noisy evidence</td>
</tr>
<tr>
<td>queries permitted</td>
<td>queries not permitted</td>
</tr>
<tr>
<td>approximate convergence</td>
<td>exact convergence</td>
</tr>
<tr>
<td>complete infinite sequences</td>
<td>any infinite sequence</td>
</tr>
<tr>
<td>computable infinite sequences</td>
<td>any infinite sequence</td>
</tr>
</tbody>
</table>

1. Identification in the limit from positive data (Gold 1967)
Some Parameters for Defining Learning Problems

<table>
<thead>
<tr>
<th>Makes learning easier</th>
<th>Makes learning harder</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive and negative evidence</td>
<td>positive evidence only</td>
</tr>
<tr>
<td>noiseless evidence</td>
<td>noisy evidence</td>
</tr>
<tr>
<td>queries permitted</td>
<td>queries not permitted</td>
</tr>
<tr>
<td>approximate convergence</td>
<td>exact convergence</td>
</tr>
<tr>
<td>complete infinite sequences</td>
<td>any infinite sequence</td>
</tr>
<tr>
<td>computable infinite sequences</td>
<td>any infinite sequence</td>
</tr>
</tbody>
</table>

2. Identification in the limit from positive and negative data
 (Gold 1967)
Some Parameters for Defining Learning Problems

<table>
<thead>
<tr>
<th>Makes learning easier</th>
<th>Makes learning harder</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive and negative evidence</td>
<td>positive evidence only</td>
</tr>
<tr>
<td>noiseless evidence</td>
<td>noisy evidence</td>
</tr>
<tr>
<td>queries permitted</td>
<td>queries not permitted</td>
</tr>
<tr>
<td>approximate convergence</td>
<td>exact convergence</td>
</tr>
<tr>
<td>complete infinite sequences</td>
<td>any infinite sequence</td>
</tr>
<tr>
<td>computable infinite sequences</td>
<td>any infinite sequence</td>
</tr>
</tbody>
</table>

3. Identification in the limit from positive data from c.e. texts
 (Gold 1967)

4. Learning context-free and c.e. distributions
 (Horning 1969, Angluin 1988)
Some Parameters for Defining Learning Problems

<table>
<thead>
<tr>
<th>Makes learning easier</th>
<th>Makes learning harder</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive and negative evidence</td>
<td>positive evidence only</td>
</tr>
<tr>
<td>noiseless evidence</td>
<td>noisy evidence</td>
</tr>
<tr>
<td>queries permitted</td>
<td>queries not permitted</td>
</tr>
<tr>
<td>approximate convergence</td>
<td>exact convergence</td>
</tr>
<tr>
<td>complete infinite sequences</td>
<td>any infinite sequence</td>
</tr>
<tr>
<td>computable infinite sequences</td>
<td>any infinite sequence</td>
</tr>
</tbody>
</table>

5. Probably Approximately Correct learning
Results of Formal Learning Theories: Existence

<table>
<thead>
<tr>
<th>Makes learning easier</th>
<th>Makes learning harder</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive and negative evidence</td>
<td>positive evidence only</td>
</tr>
<tr>
<td>noiseless evidence</td>
<td>noisy evidence</td>
</tr>
<tr>
<td>queries permitted</td>
<td>queries not permitted</td>
</tr>
<tr>
<td>approximate convergence</td>
<td>exact convergence</td>
</tr>
<tr>
<td>complete infinite sequences</td>
<td>any infinite sequence</td>
</tr>
<tr>
<td>computable infinite sequences</td>
<td>any infinite sequence</td>
</tr>
</tbody>
</table>

![Diagram of formal learning theories]

- **Computably Enumerable**
- **Context-Sensitive**
- **Mildly Context-Sensitive**
- **Context-Free**
- **Regular**
- **Finite**
Results of Formal Learning Theories: Existence

<table>
<thead>
<tr>
<th>Makes learning easier</th>
<th>Makes learning harder</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive and negative evidence</td>
<td>positive evidence only</td>
</tr>
<tr>
<td>noiseless evidence</td>
<td>noisy evidence</td>
</tr>
<tr>
<td>queries permitted</td>
<td>queries not permitted</td>
</tr>
<tr>
<td>approximate convergence</td>
<td>exact convergence</td>
</tr>
<tr>
<td>complete infinite sequences</td>
<td>any infinite sequence</td>
</tr>
<tr>
<td>computable infinite sequences</td>
<td>any infinite sequence</td>
</tr>
</tbody>
</table>

1. Identification in the limit from positive data (Gold 1967)
Results of Formal Learning Theories: Existence

<table>
<thead>
<tr>
<th>Makes learning easier</th>
<th>Makes learning harder</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive and negative evidence</td>
<td>positive evidence only</td>
</tr>
<tr>
<td>noiseless evidence</td>
<td>noisy evidence</td>
</tr>
<tr>
<td>queries permitted</td>
<td>queries not permitted</td>
</tr>
<tr>
<td>approximate convergence</td>
<td>exact convergence</td>
</tr>
<tr>
<td>complete infinite sequences</td>
<td>any infinite sequence</td>
</tr>
<tr>
<td>computable infinite sequences</td>
<td>any infinite sequence</td>
</tr>
</tbody>
</table>

2. Identification in the limit from positive and negative data

 (Gold 1967)
Results of Formal Learning Theories: Existence

<table>
<thead>
<tr>
<th>Makes learning easier</th>
<th>Makes learning harder</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive and negative evidence</td>
<td>positive evidence only</td>
</tr>
<tr>
<td>noiseless evidence</td>
<td>noisy evidence</td>
</tr>
<tr>
<td>queries permitted</td>
<td>queries not permitted</td>
</tr>
<tr>
<td>approximate convergence</td>
<td>exact convergence</td>
</tr>
<tr>
<td>complete infinite sequences</td>
<td>any infinite sequence</td>
</tr>
<tr>
<td>computable infinite sequences</td>
<td>any infinite sequence</td>
</tr>
</tbody>
</table>

3. Identification in the limit from positive data from c.e. texts (Gold 1967)
4. Learning context-free and c.e. distributions (Horning 1969, Angluin 1988)
Results of Formal Learning Theories: Existence

<table>
<thead>
<tr>
<th>Makes learning easier</th>
<th>Makes learning harder</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive and negative evidence</td>
<td>positive evidence only</td>
</tr>
<tr>
<td>noiseless evidence</td>
<td>noisy evidence</td>
</tr>
<tr>
<td>queries permitted</td>
<td>queries not permitted</td>
</tr>
<tr>
<td>approximate convergence</td>
<td>exact convergence</td>
</tr>
<tr>
<td>complete infinite sequences</td>
<td>any infinite sequence</td>
</tr>
<tr>
<td>computable infinite sequences</td>
<td>any infinite sequence</td>
</tr>
</tbody>
</table>

5. Probably Approximately Correct learning
Results of Formal Learning Theory: Feasibility

<table>
<thead>
<tr>
<th>Makes learning easier</th>
<th>Makes learning harder</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive and negative evidence</td>
<td>positive evidence only</td>
</tr>
<tr>
<td>noiseless evidence</td>
<td>noisy evidence</td>
</tr>
<tr>
<td>queries permitted</td>
<td>queries not permitted</td>
</tr>
<tr>
<td>approximate convergence</td>
<td>exact convergence</td>
</tr>
<tr>
<td>complete infinite sequences</td>
<td>any infinite sequence</td>
</tr>
<tr>
<td>computable infinite sequences</td>
<td>any infinite sequence</td>
</tr>
</tbody>
</table>
Results of Formal Learning Theory: Feasibility

<table>
<thead>
<tr>
<th>Makes learning easier</th>
<th>Makes learning harder</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive and negative evidence</td>
<td>positive evidence only</td>
</tr>
<tr>
<td>noiseless evidence</td>
<td>noisy evidence</td>
</tr>
<tr>
<td>queries permitted</td>
<td>queries not permitted</td>
</tr>
<tr>
<td>approximate convergence</td>
<td>exact convergence</td>
</tr>
<tr>
<td>complete infinite sequences</td>
<td>any infinite sequence</td>
</tr>
<tr>
<td>computable infinite sequences</td>
<td>any infinite sequence</td>
</tr>
</tbody>
</table>

1. Identification in the limit from positive data (Gold 1967)

 No superfinite class is learnable.
 The finite class is feasibly learnable.
Results of Formal Learning Theory: Feasibility

<table>
<thead>
<tr>
<th>Makes learning easier</th>
<th>Makes learning harder</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive and negative evidence</td>
<td>positive evidence only</td>
</tr>
<tr>
<td>noiseless evidence</td>
<td>noisy evidence</td>
</tr>
<tr>
<td>queries permitted</td>
<td>queries not permitted</td>
</tr>
<tr>
<td>approximate convergence</td>
<td>exact convergence</td>
</tr>
<tr>
<td>complete infinite sequences</td>
<td>any infinite sequence</td>
</tr>
<tr>
<td>computable infinite sequences</td>
<td>any infinite sequence</td>
</tr>
</tbody>
</table>

2. Identification in the limit from positive and negative data

 (Gold 1967)

 The c.e. class is learnable but NOT even the regular class is feasibly learnable (see appendix).
Results of Formal Learning Theory: Feasibility

<table>
<thead>
<tr>
<th>Makes learning easier</th>
<th>Makes learning harder</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive and negative evidence</td>
<td>positive evidence only</td>
</tr>
<tr>
<td>noiseless evidence</td>
<td>noisy evidence</td>
</tr>
<tr>
<td>queries permitted</td>
<td>queries not permitted</td>
</tr>
<tr>
<td>approximate convergence</td>
<td>exact convergence</td>
</tr>
<tr>
<td>complete infinite sequences</td>
<td>any infinite sequence</td>
</tr>
<tr>
<td>computable infinite sequences</td>
<td>any infinite sequence</td>
</tr>
</tbody>
</table>

3. Identification in the limit from positive data from c.e. texts (Gold 1967)

4. Learning context-free and c.e. distributions (Horning 1969, Angluin 1988)

The c.e. class of languages and distributions is learnable but NOT even the regular class is feasibly learnable.
Results of Formal Learning Theory: Feasibility

<table>
<thead>
<tr>
<th>Makes learning easier</th>
<th>Makes learning harder</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive and negative evidence</td>
<td>positive evidence only</td>
</tr>
<tr>
<td>noiseless evidence</td>
<td>noisy evidence</td>
</tr>
<tr>
<td>queries permitted</td>
<td>queries not permitted</td>
</tr>
<tr>
<td>approximate convergence</td>
<td>exact convergence</td>
</tr>
<tr>
<td>complete infinite sequences</td>
<td>any infinite sequence</td>
</tr>
<tr>
<td>computable infinite sequences</td>
<td>any infinite sequence</td>
</tr>
</tbody>
</table>

5. Probably Approximately Correct learning

Not even the finite class of languages is learnable.
Many classes which cross-cut the Chomsky hierarchy and exclude some finite languages are feasibly learnable in the senses discussed.

Summary

1. Structured, restricted hypothesis spaces can be feasibly learned.
2. The positive learning results are proven results, and the proofs are often constructive.
3. The claim that “statistical learning” is more powerful than “symbolic learning” mischaracterizes the learning issues.
4. The real issue is how to reduce the size of the instance space.
Gold provides three ways to interpret his three main results:

1. “The class of natural languages is much smaller than one would expect from our present models of syntax. That is, even if English is context-sensitive, it is not true that any context-sensitive language can occur naturally . . . ”

2. “The child receives negative instances by being corrected in a way that we do not recognize . . . ”

3. “There is an a priori restriction on the class of texts [presentations of data; i.e. infinite sequences of experience] which can occur . . . ”

(Gold 1967: 453-4)
Part IV

Consequences of CLT
(or The Perceptual Misconception Machine)
The main lesson from CLT

There is no free lunch.

1. There is **no** algorithm that can feasibly learn **any** pattern P, even with lots of data from P.
The main lesson from CLT

There is no free lunch.

1. There is no algorithm that can feasibly learn any pattern P, even with lots of data from P.
2. But—There are algorithms that can feasibly learn patterns which belong to a suitably structured class C.

The Perpetual Motion Machine

October 1920 issue of Popular Science magazine, on perpetual motion.

“Although scientists have established them to be impossible under the laws of physics, perpetual motion continues to capture the imagination of inventors.”

https://en.wikipedia.org/wiki/Perpetual_motion
∃ machine-learning algorithm A, ∀ patterns P with enough data D from P : $A(D) \approx P$.

1 It’s just not true.
∃ machine-learning algorithm A, \forall patterns P with enough data D from P : $A(D) \approx P$.

1. It’s just not true.
2. What is true is this:
 \forall patterns P, \exists data D and ML A : $A(D) \approx P$.
The Perpetual Misconception Machine

∃ machine-learning algorithm A, \forall patterns P with enough data D from P : $A(D) \approx P$.

1. It’s just not true.
2. What is true is this:
 \forall patterns P, \exists data D and ML A : $A(D) \approx P$.
3. In practice, the misconception means searching for A and D so that your approximation is better than everyone else’s.
∃ machine-learning algorithm A, \forall patterns P with enough data D from P: $A(D) \approx P$.

1. It’s just not true.
2. What is true is this:
 \forall patterns P, \exists data D and ML A: $A(D) \approx P$.
3. In practice, the misconception means searching for A and D so that your approximation is better than everyone else’s.
4. With next pattern P', we will have no guarantee A will work, we will have to search again.
Feasibly solving a learning problem requires defining a target class C of patterns.

1. The class C cannot be all patterns, or even all computable patterns.
Computational Laws of Learning

Feasibly solving a learning problem requires defining a target class C of patterns.

1. The class C cannot be all patterns, or even all computable patterns.
2. Class C must have more structure, and many logically possible patterns must be outside of C.
Compositional Laws of Learning

Feasibly solving a learning problem requires defining a target class C of patterns.

1. The class C cannot be all patterns, or even all computable patterns.
2. Class C must have more structure, and many logically possible patterns must be outside of C.
3. There is no avoiding prior knowledge.

Do not “confuse ignorance of biases with absence of biases.” (Rawski and Heinz 2019)
Feasibly solving a learning problem requires defining a target class C of patterns.

1. The class C cannot be all patterns, or even all computable patterns.
2. Class C must have more structure, and many logically possible patterns must be outside of C.
3. There is no avoiding prior knowledge.
4. Do not “confuse ignorance of biases with absence of biases.” (Rawski and Heinz 2019)
In Pictures: Given ML algorithm A

All patterns

All patterns
In Pictures: Given ML algorithm A

$\forall p_1$ from D_1

$\forall p_2$ from D_2

$A(D_1)$

$A(D_2)$

All patterns
In Pictures: Given ML algorithm A

All patterns

P_1

P_2

$A(D_1)$

$A(D_2)$
In Pictures: Given ML algorithm A

All patterns

\[A(D_1) \]

\[A(D_2) \]

\[\mathcal{C} \]

\[p_1 \]

\[p_2 \]
In Pictures: Given ML algorithm A

D_1 from p_1

D_2 from p_2

C

p_1

p_2

All patterns
In Pictures: Given ML algorithm A

\[D_1 \text{ from } p_1 \]
\[D_2 \text{ from } p_2 \]
In Pictures: Given ML algorithm A

All patterns

D_1 from p_1

D_2 from p_2

$A(D_1)$

$A(D_2)$

p_1

p_2
The Perpetual Misconception Machine

When you believe in things that you don’t understand then you suffer.

– Stevie Wonder
Go smaller, not bigger!

All patterns

C
Go smaller, not bigger!

All patterns

C
Go smaller, not bigger!

All patterns

C
Part III

What does ‘going smaller’ look like?
Regular and Subregular Languages

Computably Enumerable
- Context-sensitive
- Context-free
- Regular
- Finite

MSO
- FO(prec)
- FO(succ)
- Prop(succ)
- Prop(prec)
- CNL(succ)
- CNL(prec)
- Finite
Classes defined by Single DFAs

Example: Strictly 2-Local Languages

![Diagram of a DFA with transitions labeled by 'a' and 'b', and initial state labeled by λ.]

<table>
<thead>
<tr>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta \times a$</td>
</tr>
<tr>
<td>$\theta \times b$</td>
</tr>
<tr>
<td>$\theta \times \times$</td>
</tr>
<tr>
<td>θ_{aa}</td>
</tr>
<tr>
<td>θ_{ab}</td>
</tr>
<tr>
<td>$\theta_{a\times}$</td>
</tr>
<tr>
<td>θ_{ba}</td>
</tr>
<tr>
<td>θ_{bb}</td>
</tr>
<tr>
<td>$\theta_{b\times}$</td>
</tr>
</tbody>
</table>
Classes defined by Single DFAs

Example: Strictly 2-Local Languages

\[D = \langle ab, aabb \rangle \]
Classes defined by Single DFAs

Example: Strictly 2-Local Languages

\[D = \langle ab, aabb \rangle \]

Smallest language consistent with \(D \) in \(C \) is obtained by passing \(D \) through DFA and ‘activating’ parsed transitions. (Heinz and Rogers 2013)
Classes defined by Single DFAs

Example: Strictly 2-Local Languages

\[D = \langle ab, aabb \rangle \]

Smallest language consistent with \(D \) in \(C \) is obtained by passing \(D \) through DFA and ‘activating’ parsed transitions. (Heinz and Rogers 2013)
Classes defined by Single DFAs

Example: Strictly 2-Local Languages

\[D = \langle ab, aabb \rangle \]

Smallest language consistent with \(D \) in \(C \) is obtained by passing \(D \) through DFA and ‘activating’ parsed transitions. (Heinz and Rogers 2013)
Classes defined by Single DFAs

Example: Bigram model

Parameters

\[
\begin{array}{l}
\theta \times a \\
\theta \times b \\
\theta \times \times \\
\theta_{aa} \\
\theta_{ab} \\
\theta_{a\times} \\
\theta_{ba} \\
\theta_{bb} \\
\theta_{b\times}
\end{array}
\]
Classes defined by Single DFAs

Example: Bigram model

\[D = \langle ab, aabb \rangle \]
Classes defined by Single DFAs

Example: Bigram model

\[D = \langle ab, aabb \rangle \]

Maximum Likelihood Estimate (MLE) is obtained by passing \(D \) through DFA and normalizing.

(Vidal et al. 2005)
Classes defined by Single DFAs

Example: Bigram model

\[
D = \langle ab, aabb \rangle
\]

Maximum Likelihood Estimate (MLE) is obtained by passing \(D \) through DFA and normalizing.

(Vidal et al. 2005)
Classes defined by Single DFAs

Example: Bigram model

\[D = \langle ab, aabb \rangle \]

Maximum Likelihood Estimate (MLE) is obtained by passing \(D \) through DFA and normalizing.

(Vidal et al. 2005)
Learning Results

<table>
<thead>
<tr>
<th>Class C defined with</th>
<th>single DFA</th>
<th>finitely many DFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>type of language</td>
<td>$f : \Sigma^* \to {0, 1}$</td>
<td></td>
</tr>
<tr>
<td>language</td>
<td>$f : \Sigma^* \to [0, 1]$</td>
<td></td>
</tr>
</tbody>
</table>

1. For Boolean languages, the learning algorithms return the smallest language in C which includes D.

2. For Stochastic languages, the MLE returns the language in C which maximizes likelihood of D.

 (Vidal et al. 2005, Heinz and Rogers 2013, Shibata and Heinz 2019)
Learning Results

<table>
<thead>
<tr>
<th>Class C defined with</th>
<th>single DFA</th>
<th>finitely many DFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>type of language</td>
<td>$f : \Sigma^* \rightarrow {0, 1}$</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>$f : \Sigma^* \rightarrow [0, 1]$</td>
<td></td>
</tr>
</tbody>
</table>

1. For Boolean languages, the learning algorithms return the smallest language in C which includes D.
2. For Stochastic languages, the MLE returns the language in C which maximizes likelihood of D.

(Vidal et al. 2005, Heinz and Rogers 2013, Shibata and Heinz 2019)
Learning Results

<table>
<thead>
<tr>
<th>Class C defined with</th>
<th>single DFA</th>
<th>finitely many DFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>type of language</td>
<td>$f : \Sigma^* \rightarrow {0, 1}$</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>$f : \Sigma^* \rightarrow [0, 1]$</td>
<td>✓</td>
</tr>
</tbody>
</table>

1. For Boolean languages, the learning algorithms return the smallest language in C which includes D.

2. For Stochastic languages, the MLE returns the language in C which maximizes likelihood of D.

(Vidal et al. 2005, Heinz and Rogers 2013, Shibata and Heinz 2019)
Learning Results

<table>
<thead>
<tr>
<th>Class C defined with</th>
<th>single DFA</th>
<th>finitely many DFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>type of language</td>
<td>$f : \Sigma^* \rightarrow {0, 1}$</td>
<td>✓</td>
</tr>
<tr>
<td>language</td>
<td>$f : \Sigma^* \rightarrow [0, 1]$</td>
<td>✓</td>
</tr>
</tbody>
</table>

1. For Boolean languages, the learning algorithms return the smallest language in C which includes D.

2. For Stochastic languages, the MLE returns the language in C which maximizes likelihood of D.

(Vidal et al. 2005, Heinz and Rogers 2013, Shibata and Heinz 2019)
Learning Results

<table>
<thead>
<tr>
<th>Class C defined with</th>
<th>single DFA</th>
<th>finitely many DFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>type of language</td>
<td>$f : \Sigma^* \to {0, 1}$</td>
<td>✓</td>
</tr>
<tr>
<td>language</td>
<td>$f : \Sigma^* \to [0, 1]$</td>
<td>✓</td>
</tr>
</tbody>
</table>

1. For Boolean languages, the learning algorithms return the smallest language in C which includes D.
2. For Stochastic languages, the MLE returns the language in C which maximizes likelihood of D.

(Vidal et al. 2005, Heinz and Rogers 2013, Shibata and Heinz 2019)
For every Input Strictly 3-Local function, the output string u of each input element x depends only on x and the two input elements previous to x. In other words, the contents of the lightly shaded cell only depends on the contents of the darkly shaded cells.

(Chandlee et al. 2014, 2015, Chandlee and Heinz 2018, Chandlee et al. 2018)
Classes defined by Single DFAs

Example: 2-ISL Model (Parameter values are strings!)

\[
\begin{array}{c}
\text{Parameters} \\
\theta_{\times a} & a \\
\theta_{\times b} & b \\
\theta_{\times \times} & \times \\
\theta_{aa} & ba \\
\theta_{ab} & b \\
\theta_{a\times} & \times \\
\theta_{ba} & a \\
\theta_{bb} & ab \\
\theta_{b\times} & \times \\
\end{array}
\]

\[
aabb \mapsto ababab
\]
ISL function Learning Results

- Particular finite-state transducers can be used to represent ISL functions.
- Automata-inference techniques (de la Higuera 2010) are used to learn these transducers.

Theorems

Given k and a sufficient sample of (u, s) pairs any k-ISL function can be exactly learned in polynomial time and data.

- ISLFLA (quadratic time and data)
- SOSFIA (linear time and data)
- OSLFLA (quadratic time and data)

(Chandlee et al. 2014, 2015, Jardine et al. 2014)
Classes defined by Single DFAs

Example: 2-ISL Model (Parameters are stringsets!)

Parameters

\[
\begin{align*}
\theta \times a & \{a\} \\
\theta \times b & \{b\} \\
\theta \times \times & \{\times\} \\
\theta_{aa} & \{a, ba\} \\
\theta_{ab} & \{b\} \\
\theta_{a\times} & \{\times\} \\
\theta_{ba} & \{a\} \\
\theta_{bb} & \{b, ab\} \\
\theta_{b\times} & \{\times\}
\end{align*}
\]

\[aabb \mapsto \{aabb, ababb, aabab, ababab\}\]

(work in progress with Kiran Eiden and Eric Schieferstein)
Grammatical Inference

ICGI 2020 in NYC August 26-28!!
https://grammarlearning.org/
Regular and Subregular Languages

- Computably Enumerable
 - Context-sensitive
 - Context-free
 - Regular
 - Finite
 - MSO
 - FO(prec)
 - FO(succ)
 - Prop(succ)
 - Prop(prec)
 - CNL(succ)
 - CNL(prec)
 - Finite
ISL Bottom-Up Tree Transducers

(Graf 2020, Ji and Heinz 2020)
Part IV

Summing Up
Personal View

- It is a fascinating question how computers—human or machine—can learn anything, and
- How we come by the knowledge of our own language is especially interesting.

Two key ideas

1. Mathematics and theoretical computer science can be developed to provide stronger/tighter characterizations of natural language patterns.
2. Computational Learning Theory stresses the importance and necessity of structured hypothesis spaces. Don’t treat them cavalierly!
Appendix

Extra Slides
Learning Results for Regular Languages

1. The class of all DFAs is not identifiable in the limit from positive data (Gold 1967).
Learning Results for Regular Languages

1. The class of all DFAs is not identifiable in the limit from positive data (Gold 1967).

2. It is NP-hard to find the minimal DFA consistent with a finite sample of positive and negative examples (Gold 1978).
Learning Results for Regular Languages

1. The class of all DFAs is not identifiable in the limit from positive data (Gold 1967).
2. It is NP-hard to find the minimal DFA consistent with a finite sample of positive and negative examples (Gold 1978).
3. Each DFA admits a characteristic sample D of positive and negative examples such that RPNI identifies the DFA from any superset of D in cubic time (Oncina and Garcia 1992, DuPont 1996).

4. ALEGRIA/RLIPS (based on RPNI) (Carrasco and Oncina 1994, 1999) learns the class of PDFAs in polynomial time with probability one (de la Higuera and Thollard 2001).
5. Clark and Thollard (2004) present an algorithm which learns the class of PDFAs in a modified PAC setting. (See also Parekh and Hanover 2001.)
6. Maximization-Expectation techniques are used to learn the class of PNFAs, but there is no guarantee to find a global optimum (Rabiner 1989).
Learning Results for Regular Languages

1. The class of all DFAs is not identifiable in the limit from positive data (Gold 1967).

2. It is NP-hard to find the minimal DFA consistent with a finite sample of positive and negative examples (Gold 1978).

3. Each DFA admits a characteristic sample D of positive and negative examples such that RPNI identifies the DFA from any superset of D in cubic time (Oncina and Garcia 1992, DuPont 1996).

4. ALEGRIA/RLIPS (based on RPNI) (Carrasco and Oncina 1994, 1999) learns the class of PDFAs in polynomial time with probability one (de la Higuera and Thollard 2001).
Learning Results for Regular Languages

1. The class of all DFAs is not identifiable in the limit from positive data (Gold 1967).

2. It is NP-hard to find the minimal DFA consistent with a finite sample of positive and negative examples (Gold 1978).

3. Each DFA admits a characteristic sample D of positive and negative examples such that RPNI identifies the DFA from any superset of D in cubic time (Oncina and Garcia 1992, DuPont 1996).

4. ALEGRIA/RLIPS (based on RPNI) (Carrasco and Oncina 1994, 1999) learns the class of PDFAs in polynomial time with probability one (de la Higuera and Thollard 2001).

5. Clark and Thollard (2004) present an algorithm which learns the class of PDFAs in a modified PAC setting. (See also Parekh and Hanover 2001.)
The class of all DFAs is not identifiable in the limit from positive data (Gold 1967).
It is NP-hard to find the minimal DFA consistent with a finite sample of positive and negative examples (Gold 1978).
Each DFA admits a characteristic sample D of positive and negative examples such that RPNI identifies the DFA from any superset of D in cubic time (Oncina and Garcia 1992, DuPont 1996).
ALEGRIA/RLIPS (based on RPNI) (Carrasco and Oncina 1994, 1999) learns the class of PDFAs in polynomial time with probability one (de la Higuera and Thollard 2001).
Clark and Thollard (2004) present an algorithm which learns the class of PDFAs in a modified PAC setting. (See also Parekh and Hanover 2001.)
Maximization-Expectation techniques are used to learn the class of PNFAs, but there is no guarantee to find a global optimum (Rabiner 1989).