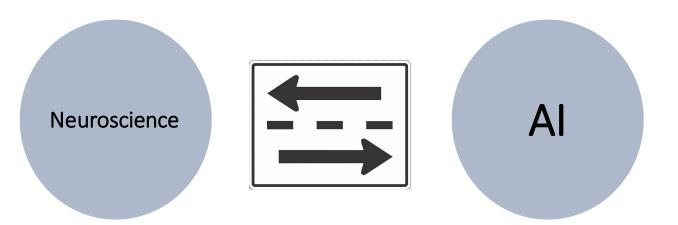
Brain evolution as a machine learning algorithm

Alex Koulakov Cold Spring Harbor Laboratory



Neuroscience

VS.

AI

Hebbian learning (local LR)

each neuron has its own set of weights

no translation invariance (complex logarithm maps)

computes with spikes

20W

connections are instructed by chemical labels

essential behaviors are innate

Are these bugs or features?

backpropagation (non-local LR)

CNNs (weight pooling)

translation invariance

computes using analog #'s

2000W

connections are trained

behaviors are learned

Examples of innate behaviors

newborn turtles

spider web

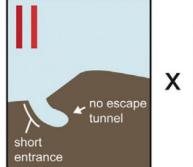
flying

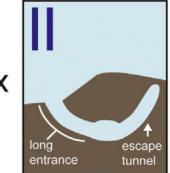
capacity for language

burrowing in peromyscus

P. maniculatus

P. polionotus





Hopi Hoekstra

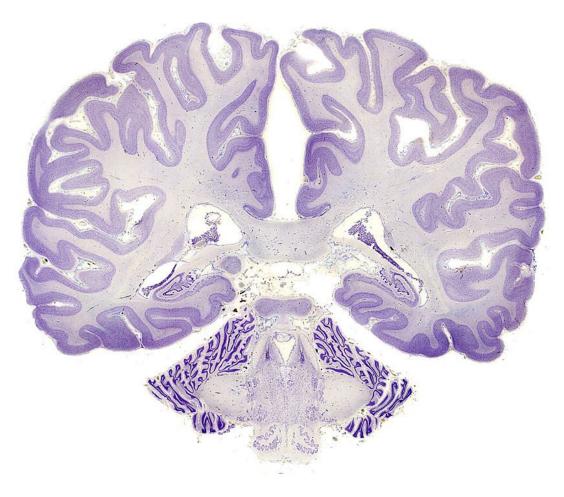
Genomic bottleneck approach to learning

Tony Zador

Sergey Shuvaev

This work is supported by Deep Valley Labs, San Jose, CA

Cerebral cortex is a thin sheet of gray matter occupying ~2 sq ft



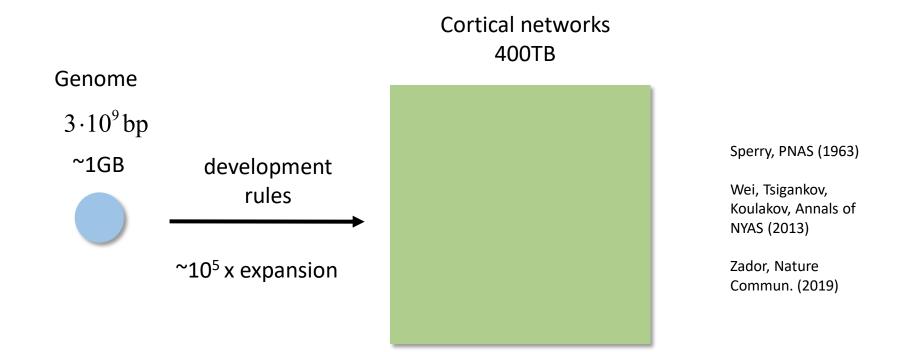
Cortex contains ~10¹⁰ neurons forming about 10⁴ synapses each

How much information can be stored in connections?

 $N \sim 10^{10}$ neurons in cortex $s \sim 10^4$ synapses per neuron

 $H = Ns \log_2 N \sim 400$ terabytes ~ 45 years of HD video

Neural development expands data

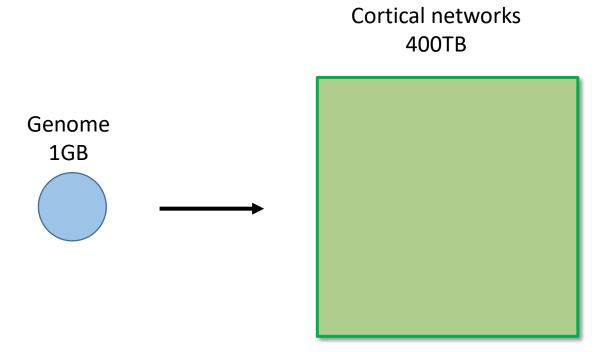


How can 1GB of information set up 400 TB of connections?

Obviously, each synapse cannot be specified in the genome individually

Some simplifying rules are necessary

Developmental mechanisms are forced to find simplifying rules or "organizing principle" for brain networks

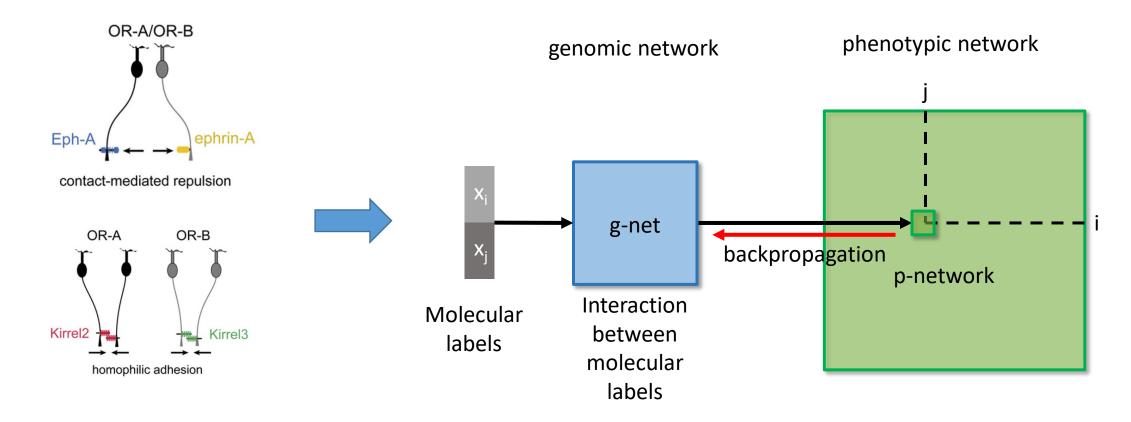


Genomic bottleneck principle:

A: Neurodevelopmental rules contained in the genome (1GB) contain information about the capacity of humans for intelligent behavior

B: The need to compress information about brain architecture into a small volume (<1GB) gives mammalian brain capacity for general intelligence (*Critique of pure learning* by Tony Zador).

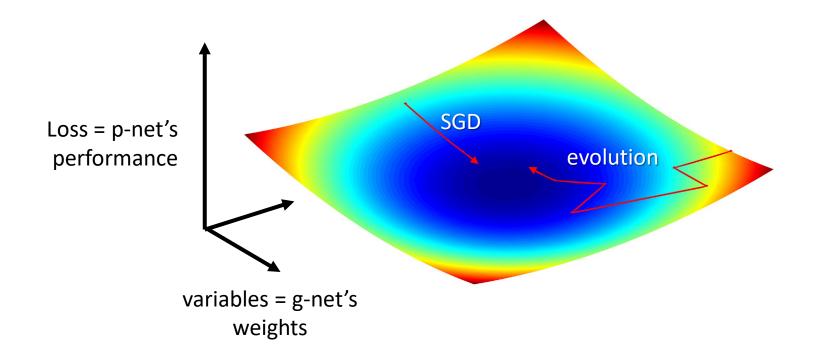
Implementation: Pairwise interactions between neurons generate connectivity in the brain



Since molecular labels are not stored in the genome, arbitrary large networks can be encoded

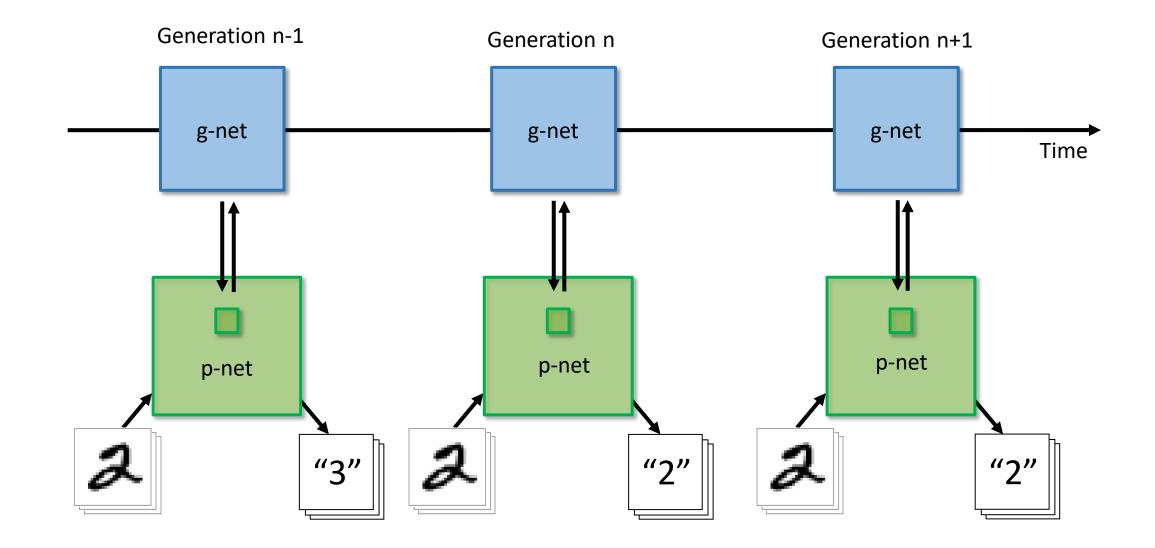
Arrays of molecular labels (x_i and x_i) are represented by binary numbers or locality-based binary Gray codes

Backpropagation ~ evolution

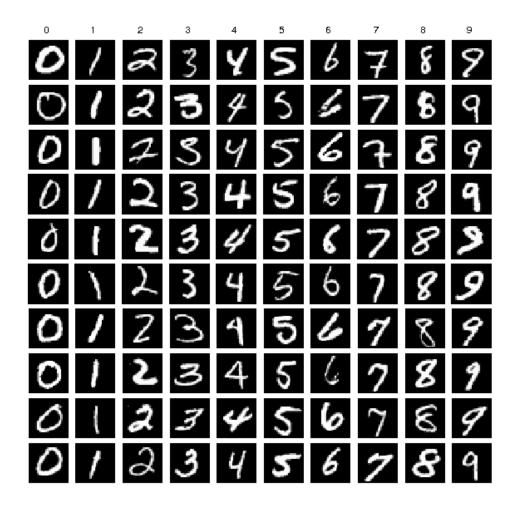


Overall goal is to use g-nets to extract simplifying principles from data

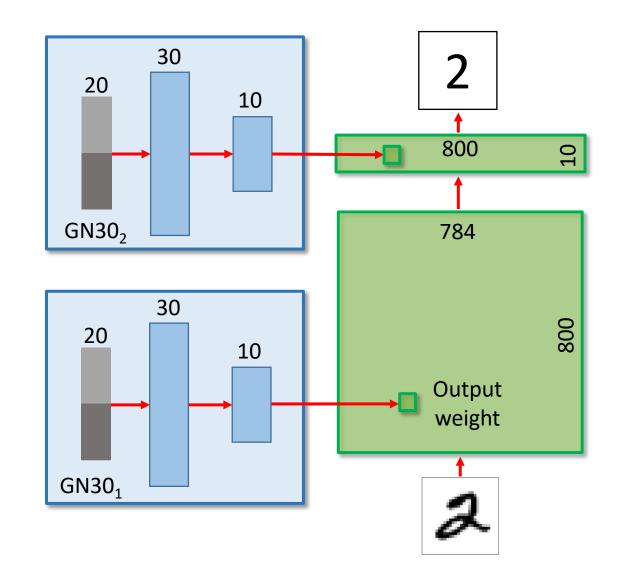
Intermittent co-training of GDN and NN replicates brain evolution



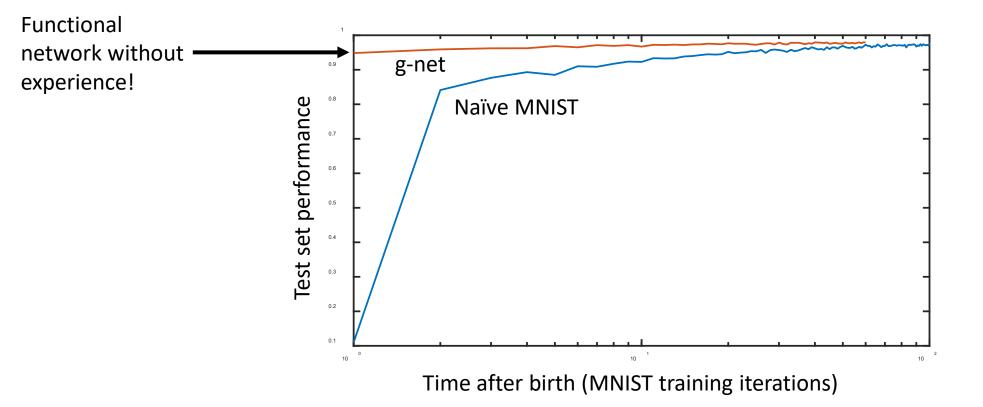
MNIST dataset



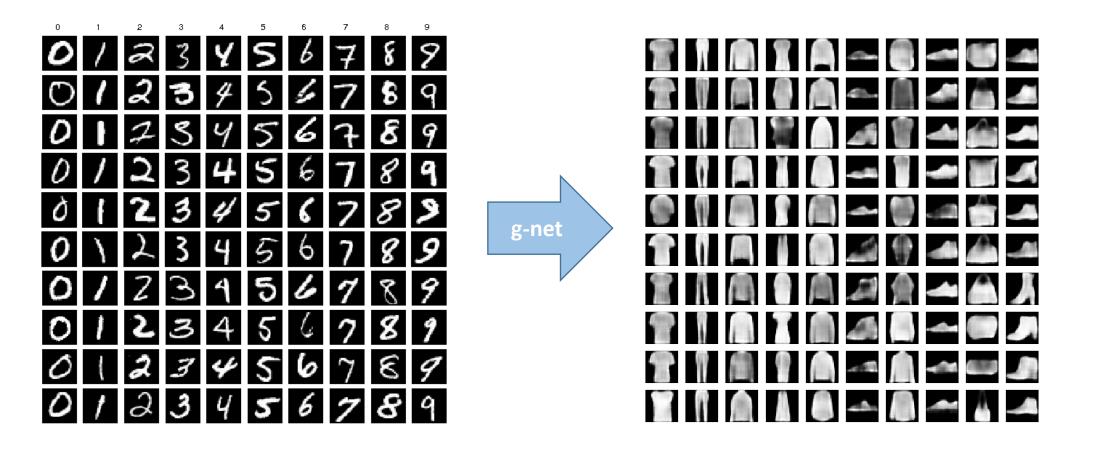
Two-layer MNIST network is encoded by two g-nets



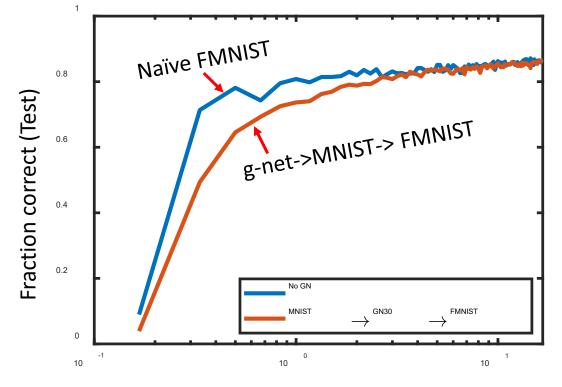
g-nets yield zero-shot learning with 333x compression



Out of sample weight transfer MNIST-> Fashion MNIST



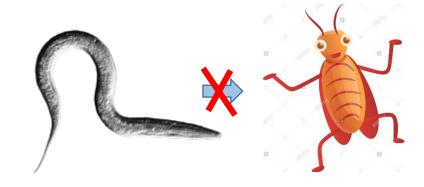
Weight transfer MNIST-> Fashion MNIST



FMNIST training epoch

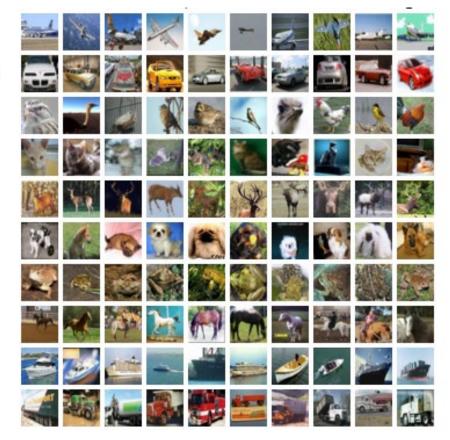
Weight transfer from MNIST makes training on FMNIST dataset slower

g-nets yielded good compression of MNIST network but poor weight transfer performance



CIFAR10 dataset

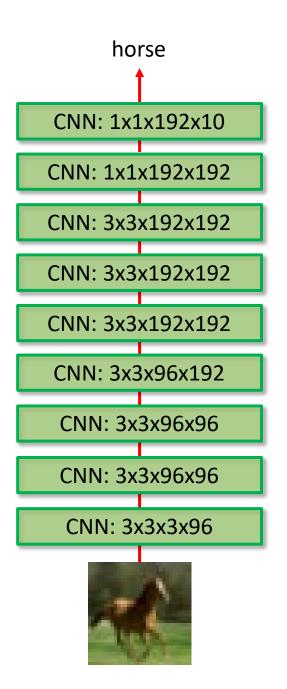
airplane automobile bird cat deer dog frog horse ship truck

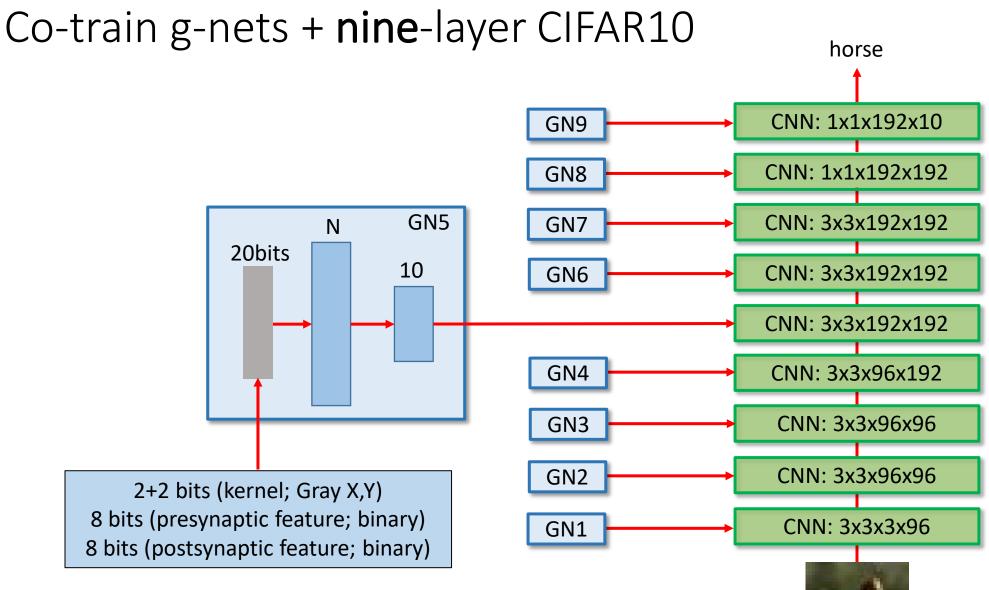


32x32x3 images (60k/10k)

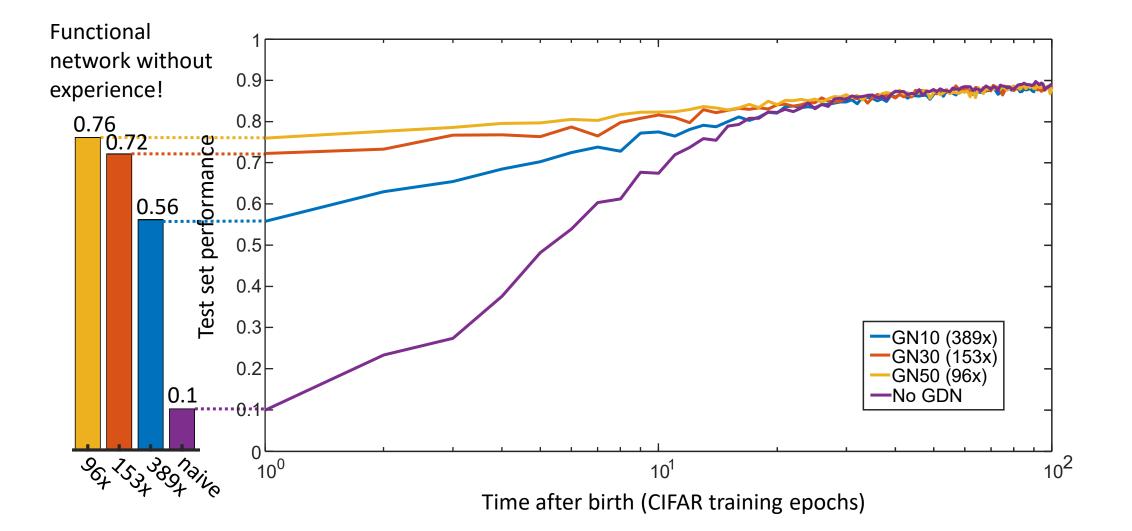
9-layer all convolutional network:

Striving for Simplicity: The All Convolutional Net arXiv:1412.6806



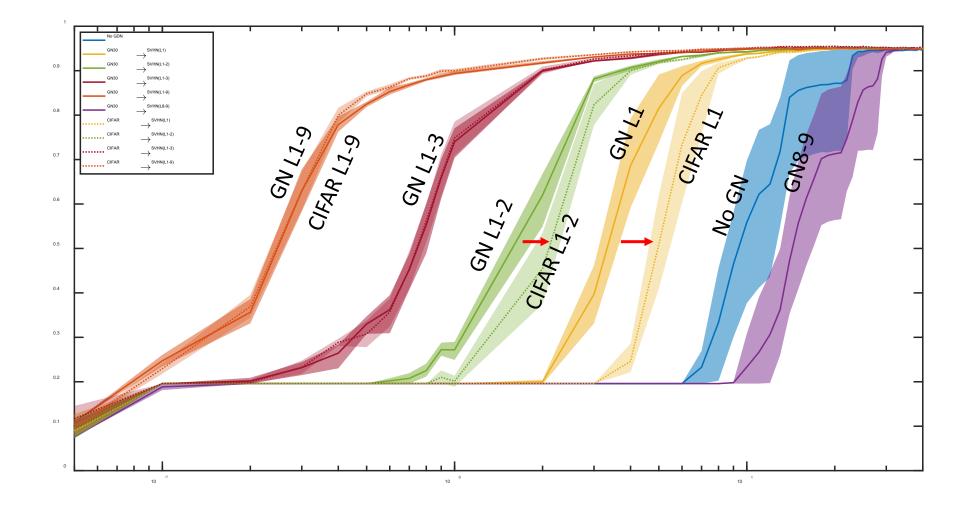


G-nets yield zero-shot performance



Out of sample weight transfer to the Street View House Numbers (SVHN) dataset

GNs outperform basic transfer learning



Conclusions: Genomic bottleneck

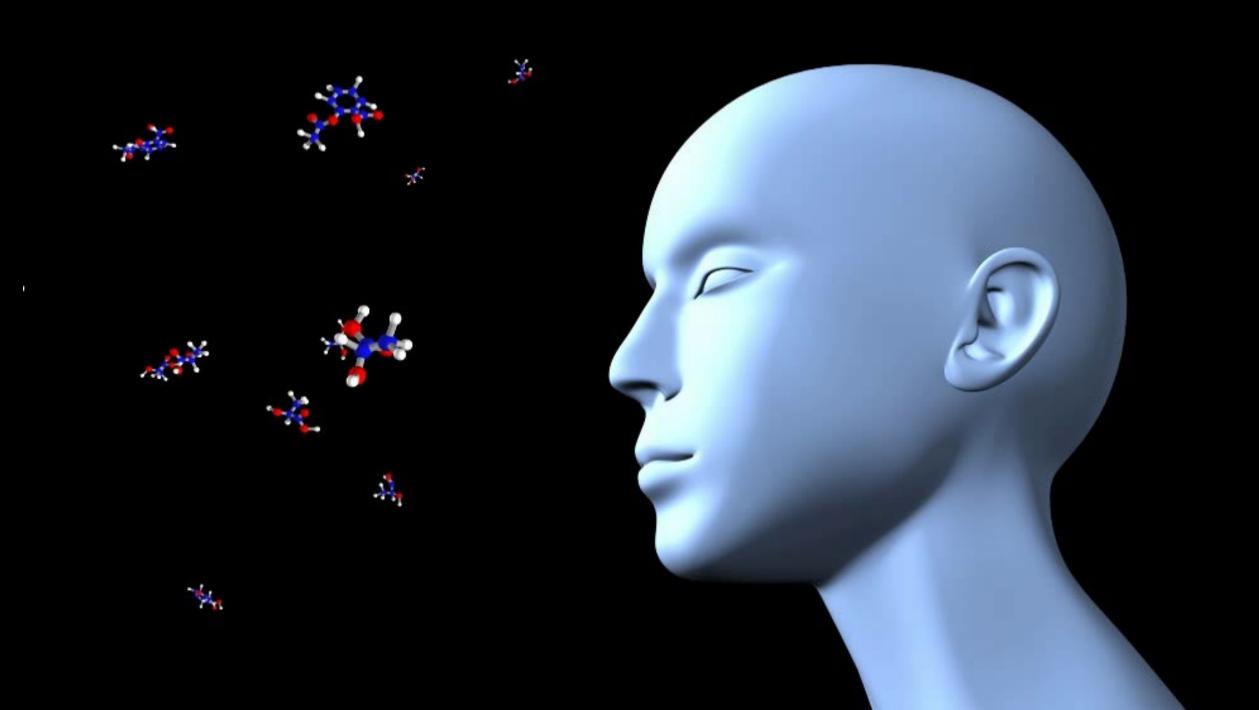
- g-network manages to find simplifying principle in data that generalizes across datasets
- Genomic bottleneck can force ANN find general principles by imposing an Occam's razor - type constraint

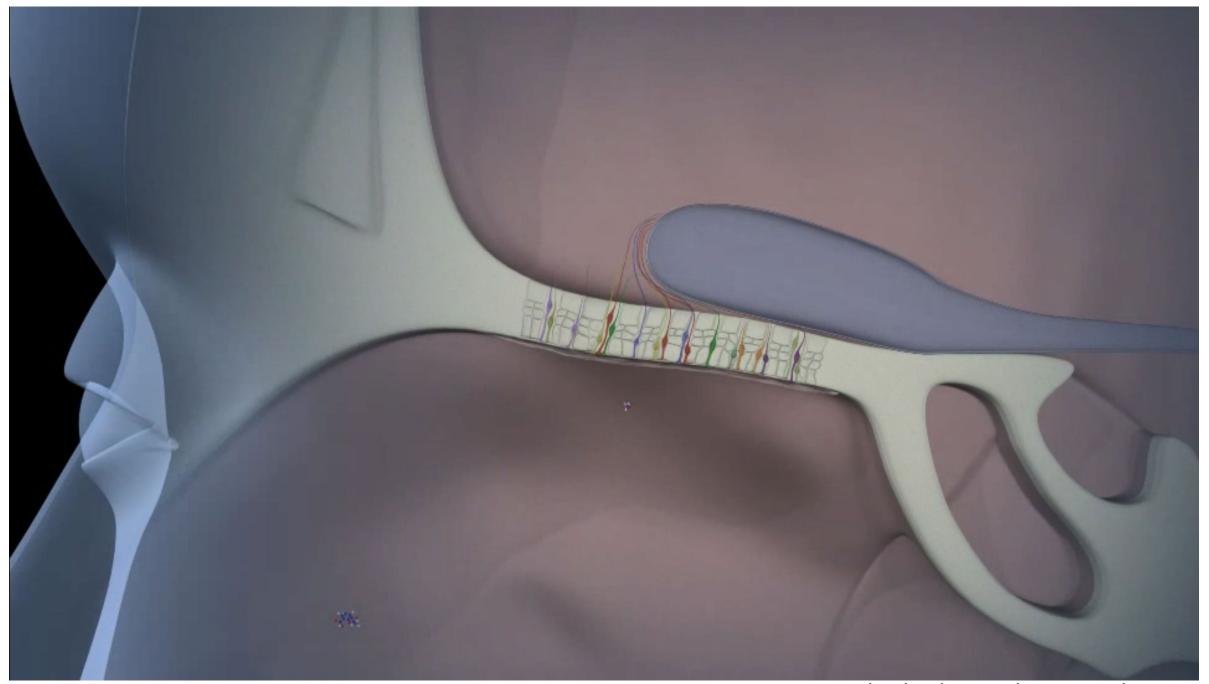
DeepNose: Using artificial neural networks to represent the space of odorants

Tumi Tran

Sergey Shuvaev

Daniel Kepple

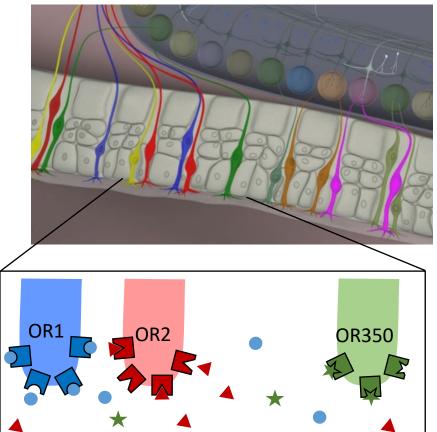




video by dancing-lemon-studio.com

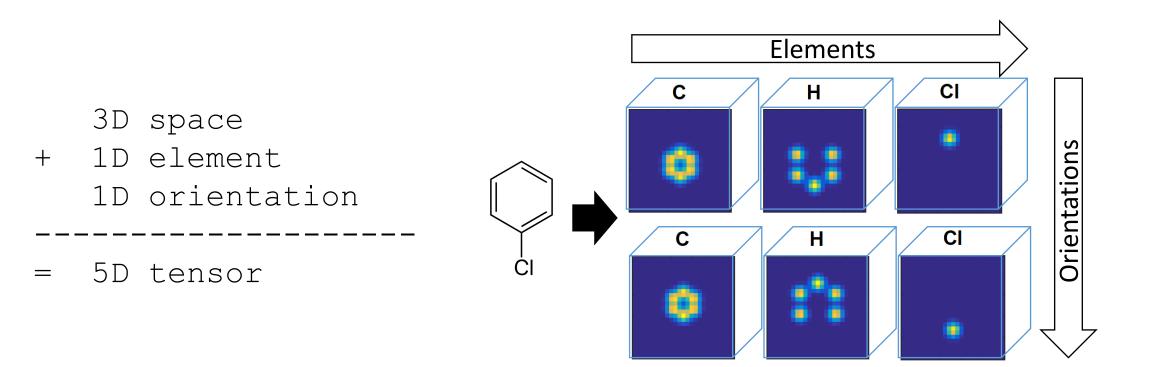
Biological considerations for ML models of olfactory system

- Nose is chiral (mirror images smell differently)
- The relevant stimulus is ambiguous
 - Many possible conformations
 - Many possible orientations

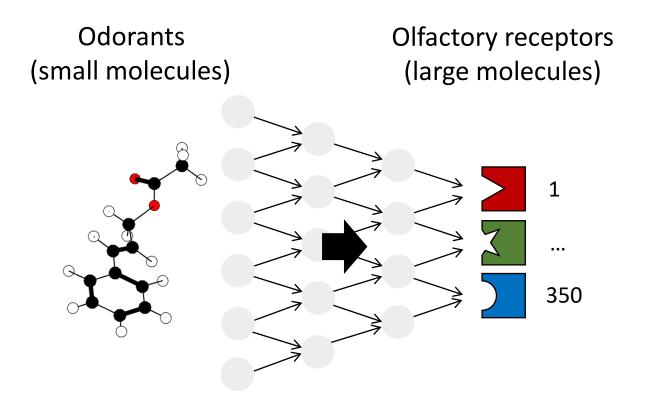


OR = olfactory receptor

Molecules can be represented as 5D tensors



What factors influence the composition of OR ensembles?



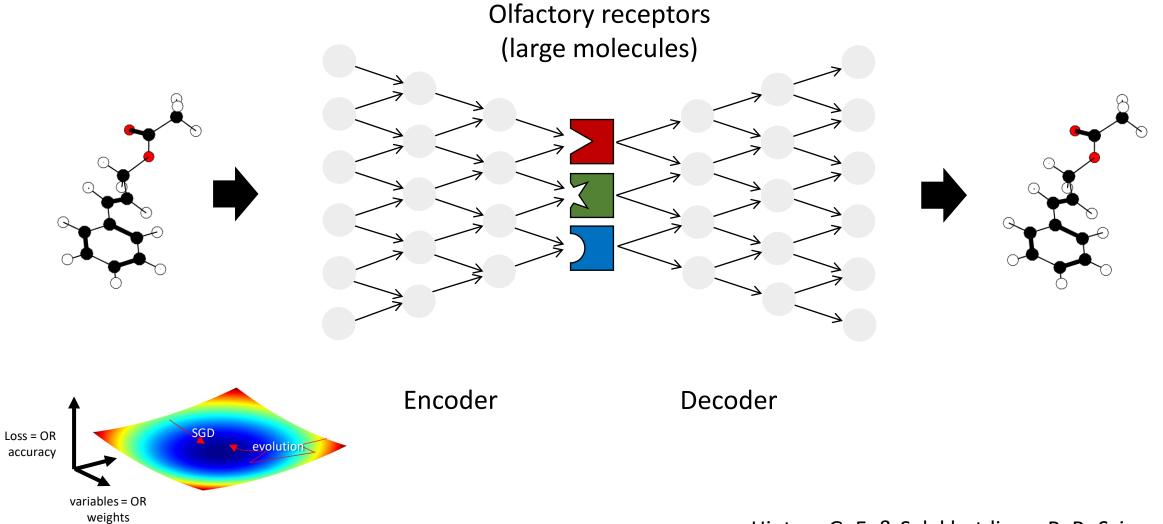
Approach: using CNN to model olfactory receptors.

 10^7 - Molecular structures available in PubChem

 $--10^3$ - perceptual data is

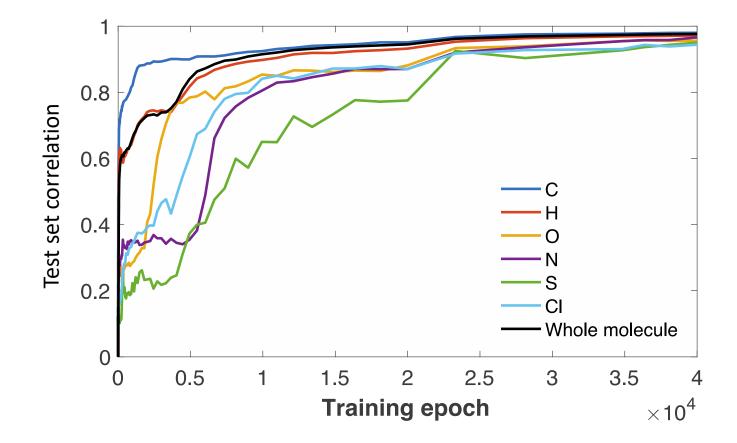
available

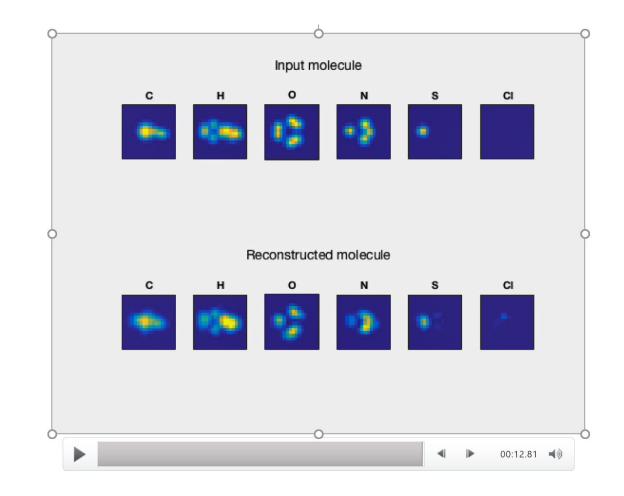
DeepNose autoencoder extracts molecular features from molecules

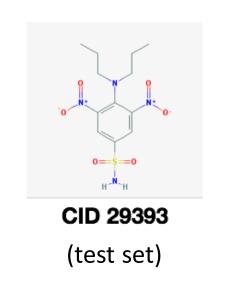


Hinton, G. E. & Salakhutdinov, R. R. Science 2006

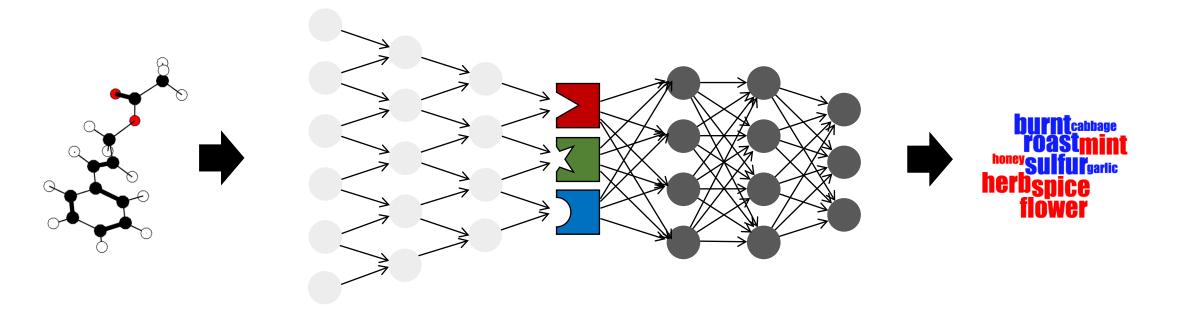
DeepNose autoencoder reconstructed molecules accurately





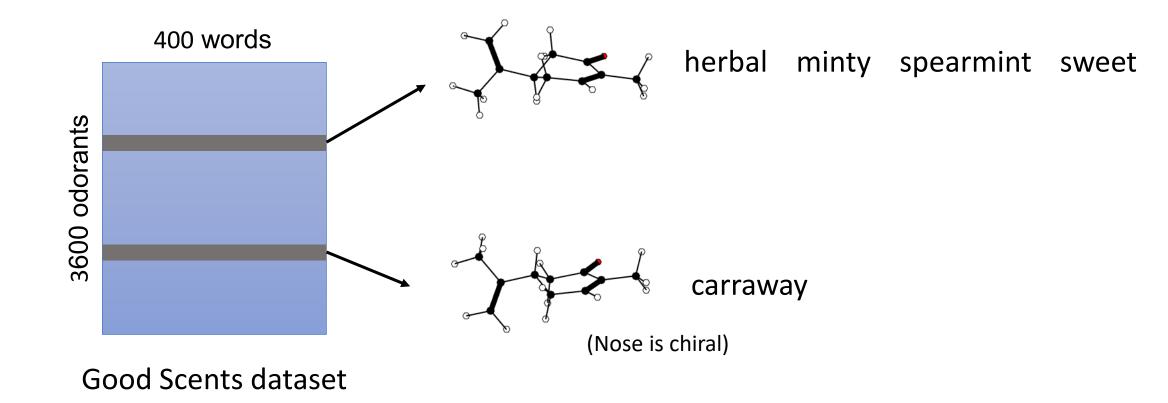


Transferring the encoder's weights to the classifier



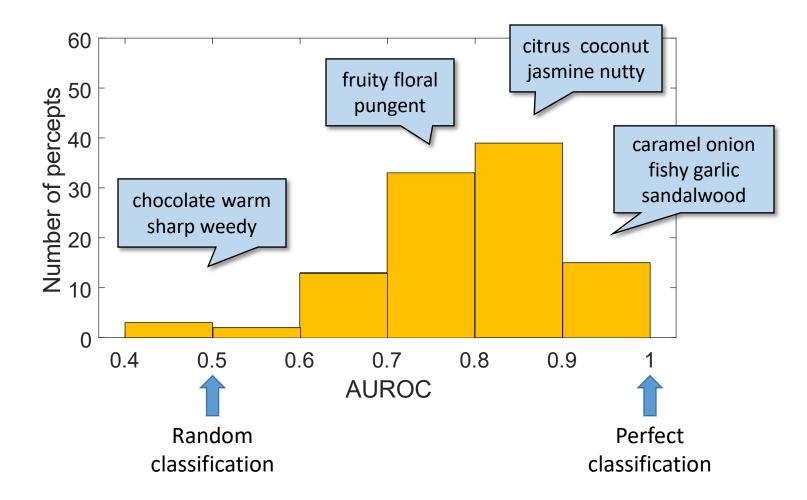
Encoder

Good Scents dataset contains perceptual descriptors for odorant molecules

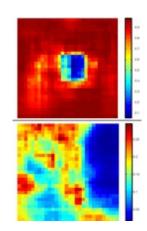


http://thegoodscentscompany.com/

DeepNose can predict olfactory descriptors based on 3D shapes alone



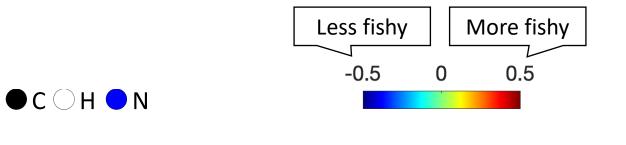
Interpreting DeepNose predictions



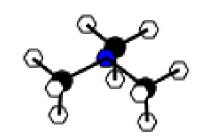
Estimating the "receptive field" of a trained neural networks:

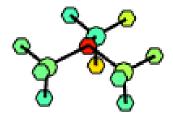
- Occlude a region of the input
- Observe its impact on prediction

"Fishy" odors – amine groups



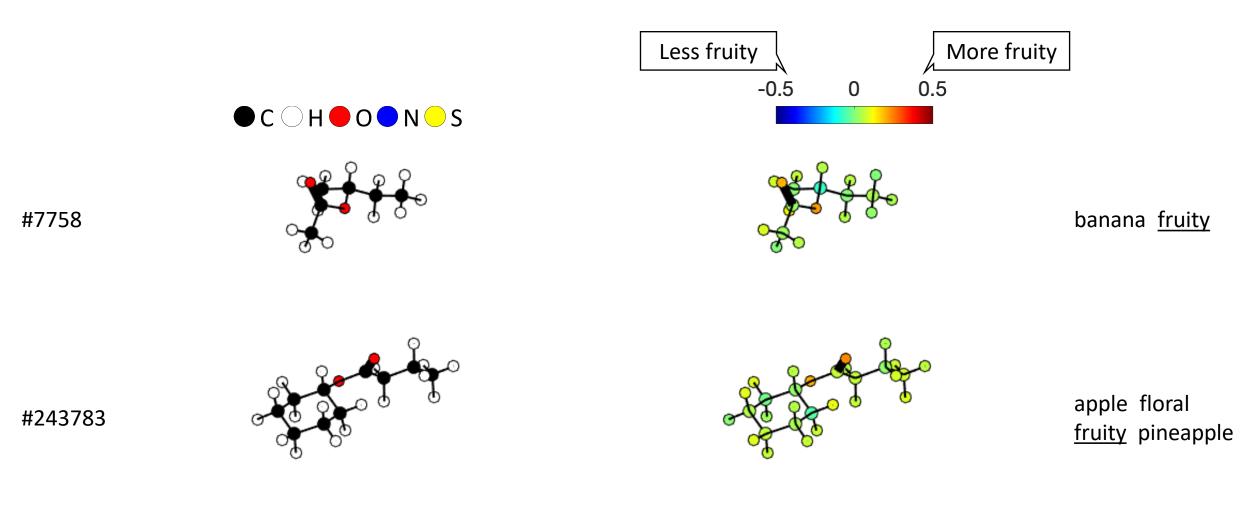
trimethylamine



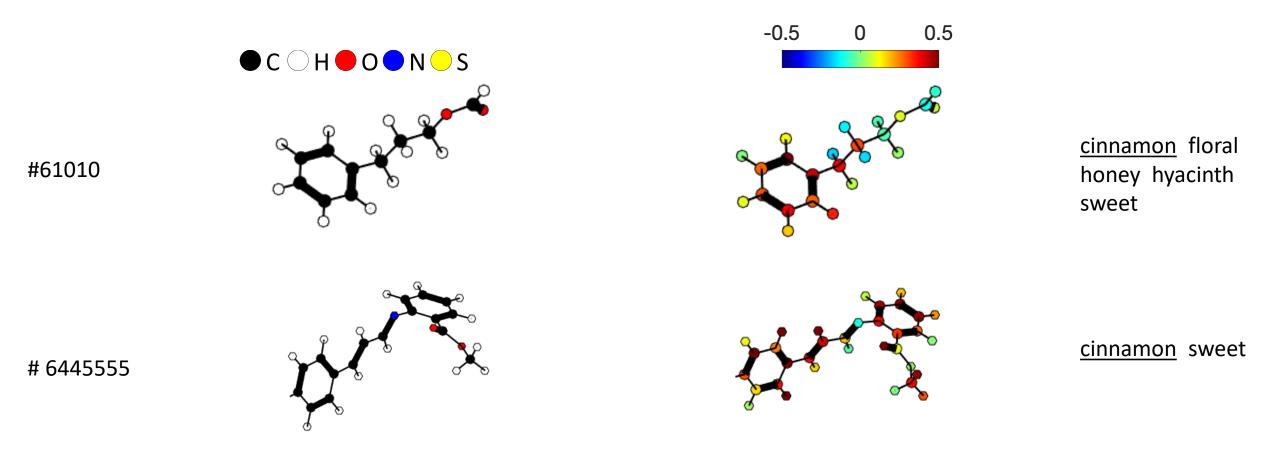


label: fishy

"Fruity" odors – ester groups



"Cinnamon" odors – benzene rings



Conclusions

- Olfactory receptors may be viewed as 3D nonlinear convolutional filters that analyzed molecular shapes.
- Deep networks can be used to model the constraint on the evolution of olfactory receptors.

We hire!

Interested in in building new machine learning algorithms inspired by the brain?

Contact me at koulakov@cshl.edu

thanks to:

Lab members

- Hamza Giaffar
- Sergey Shuvaev
- Tumi Tran ٠
- Batu Baserdem
- Daniel Kepple ٠

Collaborators:

olfaction

- Florin Albeanu (CSHL) •
- Steve Shea (CSHL) ٠
- Dima Rinberg (NYU) •
- Thomas Bozza (Northwestern) •
- Alex Fleischman (Brown) ٠
- Bob Datta (Harvard) •
- Kevin Franks (Duke) •
- Rick Gerkin (ASU) ٠
- Joel Mainland (Monell) •
- Tim Holli (WUStL) •

RL+theory

- Adam Kepecs (CSHL) •
- Sarah Starosta (CSHL)
- Bo Li (CSHL)
- Tony Zador (CSHL)
- Grisha Enikolopov (SUNYSB)
- Pavel Osten (CSHL)

Funding:

This work is supported by Deep Valley Labs, San Jose, CA

of Mental Health

THE SWARTZ FOUNDATION

