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Neuroscience AI



Neuroscience             vs.              AI

backpropagation (non-local LR)Hebbian learning (local LR)

each neuron has its own set of weights CNNs (weight pooling)

20W 2000W

no translation invariance (complex logarithm maps) translation invariance

connections are instructed by chemical labels connections are trained

essential behaviors are innate behaviors are learned

computes with spikes computes using analog #’s

Are these bugs or features?



Examples of innate behaviors 

flying

newborn turtles spider webwalking

capacity for language

burrowing in peromyscus

Hopi Hoekstra



Genomic bottleneck approach to learning 

Tony Zador Sergey Shuvaev

This work is supported by Deep Valley Labs, San Jose, CA



Cerebral cortex is a thin sheet of gray matter 
occupying ~2 sq ft

Cortex contains ~1010 neurons forming about 104 synapses each



How much information can be stored in 
connections?

10~ 10N neurons in cortex
4~ 10s synapses per neuron

2log  ~ 400 terabytes 
                      ~ 45 years of HD video
H Ns N=

Wei, Tsigankov, Koulakov, Annals of NYAS (2013)



Neural development expands data

93 10 bp ⋅

Genome

~1GB

Cortical networks
400TB

development 
rules

Sperry, PNAS (1963)

Wei, Tsigankov, 
Koulakov, Annals of 
NYAS (2013)

Zador, Nature 
Commun. (2019)

~105 x expansion  

How can 1GB of information set up 400 TB of connections?

Obviously, each synapse cannot be specified in the genome individually

Some simplifying rules are necessary



Developmental mechanisms are forced to find 
simplifying rules or “organizing principle” for brain 
networks

Genome 
1GB

Cortical networks
400TB

Genomic bottleneck principle: 
A: Neurodevelopmental rules contained in the genome (1GB) contain information about the capacity of 
humans for intelligent behavior  
B: The need to compress information about brain architecture into a small volume (<1GB) gives mammalian 
brain capacity for general intelligence (Critique of pure learning by Tony Zador).



Implementation: Pairwise interactions between neurons generate  
connectivity in the brain

p-network

genomic network

g-net i

j

xi

xj

Since molecular labels are not stored in the genome, arbitrary large networks can be encoded

Arrays of molecular labels (xi and xj) are represented by binary numbers or locality-based binary Gray codes

Molecular 
labels

Interaction 
between 

molecular 
labels

phenotypic network

backpropagation



Backpropagation ~ evolution

Overall goal is to use g-nets to extract simplifying principles from data

Loss = p-net’s 
performance

variables = g-net’s 
weights

SGD
evolution



Intermittent co-training of GDN and NN replicates brain evolution

Time
g-net

“3”

g-net g-net

Generation nGeneration n-1 Generation n+1

“2” “2”

p-net p-net p-net



MNIST dataset



Two-layer MNIST network is encoded by two g-nets
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Out of sample weight transfer MNIST-> 
Fashion MNIST

g-net
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makes training on FMNIST 
dataset slower

g-nets yielded good 
compression of MNIST 
network but poor weight 
transfer performance



CIFAR10 dataset

32x32x3 images
(60k/10k)



9-layer all 
convolutional 
network:

CNN: 3x3x3x96

CNN: 3x3x96x96

CNN: 3x3x96x96

CNN: 3x3x96x192

CNN: 3x3x192x192

CNN: 3x3x192x192

CNN: 3x3x192x192

CNN: 1x1x192x192

CNN: 1x1x192x10

horse

Striving for Simplicity: The All Convolutional Net
arXiv:1412.6806



Co-train g-nets + nine-layer CIFAR10

2+2 bits (kernel; Gray X,Y)
8 bits (presynaptic feature; binary)
8 bits (postsynaptic feature; binary)

20bits
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G-nets yield zero-shot performance

Functional 
network without 
experience!

Time after birth (CIFAR training epochs)
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Out of sample weight transfer to the Street 
View House Numbers (SVHN) dataset

g-net

CIFAR10 SVHN
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GNs outperform basic transfer learning 



Conclusions: Genomic bottleneck

• g-network manages to find simplifying principle in data that 
generalizes across datasets

• Genomic bottleneck can force ANN find general principles by 
imposing an Occam’s razor - type constraint



DeepNose: Using artificial neural networks to 
represent the space of odorants

Tumi Tran Sergey Shuvaev Daniel Kepple





video by dancing-lemon-studio.com



OR2OR1 OR350

Biological considerations for ML models of 
olfactory system

• Nose is chiral (mirror images smell differently)

• The relevant stimulus is ambiguous
o Many possible conformations
o Many possible orientations

OR = olfactory receptor



Molecules can be represented as 5D tensors
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--------------------
=  5D tensor



Approach: using CNN to model olfactory receptors.

Olfactory receptors
(large molecules)

Odorants
(small molecules)

What factors influence the composition of OR ensembles?

1

350

…



710 - Molecular structures 
available in PubChem

310 - perceptual data is 
available



DeepNose autoencoder extracts molecular 
features from molecules

Encoder Decoder

Hinton, G. E. & Salakhutdinov, R. R. Science 2006

Olfactory receptors
(large molecules)

Loss = OR 
accuracy

variables = OR 
weights

SGD
evolution



DeepNose autoencoder reconstructed molecules 
accurately
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(test set)



Transferring the encoder’s weights to the classifier

Encoder Classifier



Good Scents dataset contains perceptual 
descriptors for odorant molecules

400 words
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Good Scents dataset

http://thegoodscentscompany.com/

herbal    minty    spearmint    sweet

carraway

(Nose is chiral)



DeepNose can predict olfactory descriptors based 
on 3D shapes alone

Perfect 
classification

Random 
classification
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Interpreting DeepNose predictions

Estimating the “receptive field” of a 
trained neural networks:

• Occlude a region of the input

• Observe its impact on prediction

Zeiler & Fergus, ECCV 2014



“Fishy” odors – amine groups

label: fishy

C H N

Less fishy More fishy

trimethylamine



“Fruity” odors – ester groups

C SH O N

Less fruity

#7758

#243783

banana  fruity

apple  floral  
fruity pineapple

More fruity



“Cinnamon” odors – benzene rings 

#61010
cinnamon floral  
honey  hyacinth  
sweet

C SH O N

# 6445555
cinnamon sweet



Conclusions

• Olfactory receptors may be viewed as 3D nonlinear convolutional 
filters that analyzed molecular shapes.

• Deep networks can be used to model the constraint on the evolution 
of olfactory receptors.



We hire! 

Interested in in building new machine 
learning algorithms inspired by the 
brain?

Contact me at koulakov@cshl.edu 
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