What Can we Prove About
Neural Networks?
Al Institute Seminar, Nov 2021

Stony Brook
University

l

Formal Verification

In hardware circuits and software, formal verification
methods can prove correctness in all cases

Ck‘ @
JQA%C\‘OK,(Y‘ d' o-’c\‘:i- Error

Model checking analyzes all possible behaviors

Formal Verification in the Abstract

(System Model: M\
Formal Property: qb)

1
4)
Verification Algorithm
M = ¢?
\ .

(Yes: Proof

What is Meant by
Neural Network Verification?

Input » g%%% a
Set X %% o=

i1 € [0,1] 01 > 09

iz € [0, 1] 01 > 03

in € |0, 1] 01 > On

What Can we Prove About
Neural Networks?

Theoretically? Practically?

Verification Example 1: ACAS Xu
Air-to-Air Collision Avoidance System

https://s3.amazonaws.com/media-p.slid.es/videos/1154051/zIhdjWOj/acasxu_anim.mp4

ACAS Xu Collision Avoidance System [Katz '17]

A

1.
'10 : Yown

Why NN?: Replace a several GB lookup
table with 45 neural networks
(compression)

ACAS Xu Collision Avoidance System [Katz '17]

Inputs: Outputs:

1. Vi ’ ’ NS 1. Clear

2. Von / WW — 2. Weak-Left

3.p ' ‘ 3. Weak-Right

4, % % > 4. Strong-Left
N e 5. Strong-Right

5.6
300 neurons in 6 layers

Property o3: If the intruder is directly ahead and is moving
towards the ownship, a turn will be commanded.

Input: 1500 < p < 1800, |6] < 0.06,% > 3.1, Vown > 980, vins > 960

Unsafe Output: Clear < Weak-Left A Clear < Weak-Right A
Clear < Strong-Left A Clear < Strong-Right

Verification Example 2: Proving the
Absence of Adversarial Examples

“panda” “gibbon”
a/7. 7% confidence 00Q.3% confidence

"Explaining and harnessing adversarial examples.", Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. 2014

Verification Competition
Reachability for Verification

Other Recent Results

Verification Competition

Reachability for Verification

Other Recent Results

Comparison of Tools
VNN-COMP 2021

Organization and History of the Competition

e T1st VNN-COMP was in 2020
o Friendly Competition
e 2nd VNN-COMP

o Standardized Competition
o Sponsorship

Goals: Standardized Competition

e Unified format for specifications: Vnnlib
e Unified format for NNs: onnx

e Common hardware: CPU and GPU @ O N N X
VNN-LIB aWS

Verification of Neural Networks ,‘7

Overview of Benchmarks

Benchmark Name

Acasxu

Cifar10_resnet

Cifar2020 (unscored)

Eran

Marabou-cifar10

Mnistfc

nn4sys

Oval21

Verivital

Application

Control

Image Classification
Image Classification
Image Classification
Image Classification
Image Classification

Database Indexing

Image Classification

Image Classification

Network Types
Feedforward + ReLU Only
ResNet

Conv + RelU
Feedforward + non-RelLU
Conv + RelU
Feedforward + ReLU Only

Feedforward + ReLU Only

Conv + RelLU

Conv + maxpool / avgpool

Size of Each NN

54.6k

440k, 487k

8.3M, 9.41M

1.37M, 1.68M

336k, 649k, 1.29M

1.03M, 1.53M, 2.03M

Zipped 1.79M, 790k
Original 194.2M,
336.5M

216k, 415k, 840k

46.3k, 46.3k

https://github.com/stanleybak/vnncomp2021/tree/main/benchmarks

Provider

From last year

CMU [US]

From last year

ETH [Switzerland]

Stanford [US]

Imperial College London [UK]

CMU, Northeastern [US]

Oxford [UK]

Vanderbilt [US]

Tool Name

Marabou

VeriNet

ERAN
Alpha-Beta-CROWN
DNNF

NNV

OVAL

NN-Reach
NeuralVerification.jl

Venus
Debona

nnenum

Institution of Participants

Stanford [US]

Imperial College London [UK]

ETH [Switzerland]

CMU, Northeastern, Columbia, UCLA [US]
U Virginia [US]

Vanderbilt [US]

Oxford [UK]

Stanford [US]
CMU [US]

Imperial College London [UK]
RWTH Aachen [Germany]

Stony Brook [US]

GPU: p3.2xlarge, 8vCPUs, 61 GB memory, 1x V100 GPU,

Overview of Tools (12 Tools) cupa

CPU: r5.12xlarge, 48vCPUs, 384 GB memory, no GPU, $3.02/hour

Link

https://github.com/anwu1219/Marabou_private
https://vas.doc.ic.ac.uk/software/
https://github.com/mnmueller/eran_vnncomp2021
https://github.com/huanzhang12/alpha-beta-CROWN
https://github.com/dlIshriver/DNNF
https://github.com/verivital/nnv
https://github.com/oval-group/oval-bab

https://github.com/StanfordMSL/Neural-Network-Reach

https://github.com/intelligent-control-lab/NeuralVerificati
on.jl

https://github.com/pkouvaros/venus2_vnncomp21

https://github.com/ChristopherBrix/Debona

https://github.com/stanleybak/nnenum

CPU(r5.12xlarge)
/GPU(p3.2xlarge)

CPU

CPU

CPU

CPU

CPU
CPU

CPU
CPU

CcPU

Gurobi?

Yes

Yes

Yes

Yes

Yes

Competition Challenges

Incorrect Results: Tools would lose points when results are
wrong. How to judge what's wrong?

Scoring: Different tools support different architectures or layer
types. What's the best way to perform scoring?

Overhead Measurement: Importing tensorflow / pytorch or
initializing a GPU can take a few seconds. Some easier
benchmarks could be checked in less than one second. How to

judge fairly?

Common Hardware: We wanted to run things on identical
hardware this year, what hardware to use?

and the winner is ...

Voting:

. alpha-beta-CROWN: 776.67
. VeriNet: 709.21

ERAN: 588.71

. oval: 588.38

. Marabou: 302.14

. Debona: 208.7

.venus2: 194.56

.nnenum: 194.21

. nnv: 59.05

10. NeuralVerification.jl: 48.06
11. DNNF: 24.93

12. Neural-Network-Reach: 20.08
13. randgen: 1.84

OONOUTAWN=

But Reachability Methods Did Well Some
of the Categories...

ACASXu

nnenum 1910 100.00%
VeriNet 1852 96.96%
Marabou 1809 94.71%
oval 1794 93.93%
venus2 1778 93.09%
a-b-CROWN 1732 90.68%
ERAN 1506 78.85%
Debona 1086 56.86%
NN-R 486 25.45%
nnv 348 18.22%
DNNF 182 9.53%
randgen 28 1.47%

NV 23 0%

Full VNN-COMP Results & Presentation:

https://docs.google.com/presentation/d/1
oM3NqgqUO3EUqgQVc3bGK2ENgHa57u-
W6Q63Vflkv000/edit?usp=sharing

https://docs.google.com/presentation/d/1oM3NqqU03EUqgQVc3bGK2ENgHa57u-W6Q63Vflkv000/edit?usp=sharing

Verification Competition

Reachability for Verification

Other Recent Results

Technical Methods

So how do you verify a
heural network anyway?

Neural Network Execution

Executing fully-connected neural networks uses two
operations:
(1) affine transformations, and (2) activation functions.

- - 1
~ Cal]
1.0
m\
N A |
> r g |

Input Point——==>——>=>——>=>—>=» Output

Point

Two Set Operations Needed

Verification needs two types of set operations:
(1) affine transformations, and (2) activation functions.

Input Set ——>=>——>=>——>»>—>—» Output Set

Affine Transform

An affine transformation f is a function that transforms
an n-dimensional point z to a g-dimensional point defined
using a matrix A and vector b.

f(z) : R® — R?
r+— Ax + b

If z is a vector of n outputs of some layer, then the ¢ inputs
to the next layer are Ax + b, where A is the weights matrix
and b is the bias vector.

RelLU Activation Functions

RELU(z) = max(«, 0)

RelLU Activation Functions

RELU(z) = max(«, 0)

RelLU Activation Functions

RELU(z) = max(«, 0)

RelLU Activation Functions

RELU(z) = max(«, 0)

RelLU Activation Functions

RELU(z) = max(«, 0)

RelLU Activation Functions

RELU(z) = max(«, 0)

Y;

Zonotope
Overapproximation

RelLU Activation Functions

RELU(z) = max(«, 0)

Y;

Single Upper Bound /
Single Lower Bound
Overapproximation

RelLU Activation Functions

RELU(z) = max(«, 0)

Y;

Single Upper Bound /
Single Lower Bound
Overapproximation

RelLU Activation Functions

RELU(z) = max(«, 0)

Y;

Single Upper Bound /
Single Lower Bound
Overapproximation

Zonotope and Star Set Intuition

Z={zxzeR"|z=c+Va,ac|[-1,1]P}
S={zecR"|z=c+Va,ac Cz <d}

A zonotope is a set of points defined with an affine
transformation from a p-dim unit box to an n-dim space

A linear star set is a set of points defined with an affine
transformation from a p-dim polytope to an n-dim

A IR

ac RP r=c+Va r e R"

Operations on Linear Star Set
(¢, V,P)
Affine Transformation: matrix-matrix

multiplication to compute ¢’ and V'. Result is
(', V', P).

Optimization: put star set definition into a linear
program (LP) and minimize.

Intersection: given a halfspace H = {z | Gz < g},
let Py(a) = GVa < g — Ge. Resultis (¢, V, P A Pg).

Numerical
Example

Initial Set:
x1 € [0.5,1]
o € |0, 2]

- @ @ -
- @ @ -

Rotate 45 degrees: Translate down:

- (cos(z) —sin(3) w= (LY
g

Zonotope and Star Set
Z={zecR"|z=c+Va,ac|-1,1}
S={zeR"|z=c+Va,ac Cx <d}

A zonotope is a set of points defined with an affine
transformation from a p-dim unit box to an n-dim space

A linear star set is a set of points defined with an affine
transformation from a p-dim polytope to an n-dim space

a € RP r= c+ Vo r e R"

In our example, p = n = 2. Using star sets, all

operations (intersection, optimization), are performed
in the input space.

Notes on Zonotopes

Optimization on zonotopes is quick. Why? It becomes
an optimization problem over rectangles in the input
space, which can be done with a simple loop.

support
point
Optimization problem:
Maximize in this Subject to being inside
direction this rectangle

support pt = []

d range(dims):
optimization vec[d] > O0:

dim value = box[d].lower bound

1

2

4

5 dim value = box[d].upper bound
6 .

7

8

9

support pt.append(dim value)

Initial Set;
I € [0.5, 1]
Tro € [0,2]

Input Space

R —sin<%>)

) cos(%)

Input Space Current Space

hY

min/max
-direction

2 -1 0 1

Input Space

optimization
direction gets
converted

to input space

support points
get converted to
current space

>

min/max
direction

—2 -1 0 1 2

Current Space

Input Space

constraint direction
gets converted
to input space

€

Set is split
along x=0

BN

Current Space

Input Space

Negative set
projected to x=0

b

Current Space

No splitting is possible for second ReLU (along y=0)

optimization

oL direction gets 2- °
converted
I to input space 1-
A VA L
o 0
: : min/max
_min/max min/max support points -1F . .
dir #2 dir #1 get converted to direction
—2- current space 2] | | | |
> 2 -1 0 1 2

2 -1 0 1 2

Input Space Current Space

Translate down:

v-(3)

b:(7_§)

No splitting is possible for first ReLU (along x=0)

optimization
2- \ il direction gets 2-
A converted ®
@ N N 20 input space 1r
0 0
min/max | min/max | %
1 b, | support points _; . .
dir #2 dir #1 get converted to min/max
o currentspace _2- direction
2 -1 0 1 2 > 2 -1 o0 1 2

Input Space Current Space

Translate down:

(2)

b:(7_§)

Splitting is needed for second RelLU for blue set (along y=0)

2 -

A

0

2

_min/max
, dir #2

2

0

min/max
dir #1

1 2

Input Space

optimization
direction gets
converted

20 input space

support points
get converted to
current space

2L

1-

0

-1 -

-2 -

_'2

_'1

L4
min/max
direction

0 1 2

Current Space

Final Input Space

: N

l\
-1- neg part
projected
—2| to zero

2 -1 0 1 2

Final Output Space

Efficiency

How do you speed things up?

ldeas from two papers:

"Improved Geometric Path Enumeration for Verifying ReLU Neural
Networks", S. Bak, H.D Tran, K. Hobbs and T. T. Johnson, 32nd
International Conference on Computer-Aided Verification (CAV 2020)

"nnenum: Verification of ReLU Neural Networks with Optimized
Abstraction Refinement.", Bak, Stanley. NASA Formal Methods
Symposium (NFM 2021)

Two Paths to Improvement

Create Optimize
New Existing
Algorithms Algorithms

Formal Methods

“Engineering matters: you can't properly evaluate a
technique without an efficient implementation.”

-Ken McMillan

Optimization:
Measure Don't Guess

To improve performance, you must first find
the bottleneck of the algorithm.

The majority of the runtime is spent making
unnecessary copies.

Optimization:
Measure Don't Guess

To improve performance, you must first find
the bottleneck of the algorithm.

T erit b L "
tHecessary-coptes:

The majority of the runtime is spent optimizing
(solving LPs), to find the input bounds for each
neuron.

RelLU Activation Functions

RELU(z) = max(«, 0)

)acz-

lz' U;

Two LPs are solved to find [; and w; for each neuron.

LP Reductions

Input Range from
Zonotope
Overapproximation

l@' U;

How can we avoid LP solving?

In formal verification, achieving high performance
means using the appropriate level of abstraction

ldea: Use Zonotope overapproximations to prove
branching is possible without LP solving

What if Zonotope doesn't help?

A

Concrete
Input

\

l@' U;

Actually, we don't usually need to compute I; and wu;,
just to checkifl; < 0 < wu;,.

If I; > 0, we're done (single LP)!

A

so, if u; <0, we're done... how to choose direction?

ldea: use a concrete execution of the NN

Zonotope Accuracy

LP solving is still the bottleneck, how can we do
better?

The zonotope prefilter works better if it's more
accurate. How can we increase it's accuracy?

ldea: Contract the domain of the zonotope
overapproximation when splitting.

Zonotope Domain Contraction

Black: Zonotope
Red: Star Set

N -

a € RP r= c+Va r € R"

Zonotope Domain Contraction

Black: Zonotope
Red: Star Set

Zonotope Domain Contraction

Black: Zonotope
Red: Star Set

Zonotope Domain Contraction

Black: Zonotope
Red: Star Set

Zonotope Domain Contraction

+ Reduced y-max

-

Original Contract-Simple

Zonotope Domain Contraction 2

Original

Zonotope Domain Contraction 2

+ Reduced y-max

-

Original Contract-LP only

Zonotope Domain Contraction Approaches

Q: How often do we contract?
A: Every time we take an intersection.

Algorithms:

1. Single Loop Algorithm: does old box + single new constraint
reduce box bounds?

2."0Old LP" - Solve one LP for each lower and upper bound

3. "Witnesses" - Store min/max points, and then when adding
constraint check to see if they are removed

4, "New LP" - Optimize in multiple directions concurrently first,
to check if bounds have changed.

What about Overapproximation?

A 4

li U;

Triangle Overapproximation Best Area Zonotope

N

N

Y-Bloat Zonotope Interval Zonotope

Since zonotopes are so much faster, why not consider all three
zonotopes at the same time (multi-abstraction analysis)?

How about try zonotopes first, and if that fails use star sets
(multi-round analysis)?

Exact vs Overapproximation

For each ReLU with I; < 0 and u; > 0, you can choose between
splitting (exact) or single-set triangle overapproximation.

Neither is always best.

Yi Yi | a‘-\o(\
R

Set One

In formal verification, achieving high performance means using
the appropriate level of abstraction.

ldea: Combine splitting and overapproximation. Challenge: how
to choose?

CEGAR - Counter-example guided
abstraction refinement

The CEGAR approach is to overapproximate everywhere, and if
verification fails, go back and refine.

Where to refine? Simple approach: at the first neuron.

Subproblems are generally analyzed from more abstract to
more concrete.

Potential downside: overapproximation analysis, which often
fails, can take a long time.

EGO - Execution-Guided
Overapproximation

The EGO approach keep splitting until one branch of the
search tree is verified.

Then, overapproximations are done from the tips of the tree,
rather than the root.

Subproblems are generally analyzed from more concrete to
more abstract.

CEGAR vs EGO Exploration Order

Verification Competition
Reachability for Verification

Other Recent Results

Larger Perception NNs

224 %224 x3 224 % 224 x Gd

2w112 % 128
Gifif O l
28w 26 x 512 THTx512
;«ﬁ” i’“ﬁ”ﬁx"%iﬂ 1314096 131 1000
g Pepper?
°
@ convolution+ReLT

r’ A ik peoolin
fully connected+HelT
[l softmax

VGG-16
(>10 million neurons)

See the CAV 2020 paper:
"Verification of Deep Convolutional Neural Networks Using ImageStars"
H.D Tran, S. Bak, W. Xiang and T. T. Johnson

Image Star

o4 |12 0/1 0|0

213112 3 o|0|0| O 1)
O=c+av= + o P= o<

1({3 1] 2 0|0 |0|O0 -1 2

2|1 1|32 0|0|0 |0

CER4X4X1 VER4X4X1

Linear Layer examples (from onnx): 'Add’, 'AveragePool’,
'Constant’, 'Concat’, 'Conv' (diluted convolution, transpose
convolution), 'Flatten', 'Gather’, 'Gemm’', 'MatMul', 'Mul’,
'Reshape’, 'Shape’, 'Sub’, 'Unsqueeze'

Nonlinear layers: max-pooling, atan, tanh, sigmoid,
softmax (but can usually ignore)

Another Problem: Larger
Perception NNs

Bell
Pepper?

VGG-16
(>10 million neurons)

Numeric Issue: L-inf spec will require 224*224*3=~150k
generators, first layer of VGG16 is 224*224*64=~3m,

single-precisiggefcl)%z?t ZGO% ggrs per number

Verlflcatlonsc%LDeeg SO% ceél |: \e/\r;daelczlﬁ fﬁsl\ltefgv%\;gpﬁség |Q§]J§1age5tars
and then youacan STt to’a Ze |Fspﬂ?t|ng IS possible

Closed-Loop Analysis

Physical
System

Closed-Loop Analysis with Noise

4 | Collision State |)

A A

Node: #3 Node: #1
/ 2 0 K Advisory: Right Advisory: Left : \
Obs Noise: 0.4% Obs Noise: 0% !

15K - % & f

o Unexplored Min-err Node: #2 Node: #4
® 10K - Predecessor Predecessor Advisory: Right | | Advisory: Left
QD Advisory: Left Advisory: Right Obs Noise: 0% Obs Noise: 0.7% :
[Obs Noise: 0.8% Obs Noise: 0.5% 5

Unexplored Unexplored Advisory: Right
OK"’ Predecessor Predecessor ObsNoise: 0% | |
Advisory: Left Advisory: Right -
-40] Obs Noise: 0.8% Obs Noise: 1.3% N 0K

4 A

Unexplored Unexplored

Predecessor Predecessor
Advisory: Left Advisory: Right
\ Obs Noise: 1.0% Obs Noise: O.Qj/

Closed-Loop Analysis

>

i

—>

Black-Box

Physical
System

Decision Points

ACAS Xu Simulations

Strong Left

Weak Left

Clear of Conflict

Weak Right

Strong Right H

—
[\
o
=
o

s s o 8 @

o
o
o
en]

Y Position (ft)
3
3

S
o
o
o

2000 -

3 RIS AR i e A st 0 A g T
0* T SN 5 S R "-;4- R RAHTRLe thd

—6000—4000—-2000 0 2000 4000 6000
X Position (ft)

Y Position (ft)

Decision Points

ACAS Xu Simulations ACAS Xu Reachable Set

Strong Left

* Weak Left
12000- s Clear of Conflict 12000 -

8000 -

6000 -

4000 -

2000 -

0,

* Weak Right
N = Strong Right

10000 F
)
HM q\.:', 8000 - lﬁ F
-
o
RO a s = e B T - 0
2 : = 6000- "
o
¥ N - I
> 4000 -
2000 -
R .00
R A W R i T 0-
—6000—4000-2000 0 2000 4000 6000 —6000—4000—2000 0 2000 4000 6000
X Position (ft) X Position (ft)

I

From black-box analysis
with local numerical
linearization

Best Convex Overapproximation?

For each ReLU with I; < 0 and u; > 0, you can choose between
splitting (exact) or single-set triangle overapproximation.

Y;

Triangle overapproximation is only tight with respect to a single
neuron. With multiple neurons it can be conservative.

Best Convex Overapproximation?

4)

Semantic Segmentation Networks

(b) Ground Truth (c) PSPNet [/1]

(d) DilatedNet [69] (e) ICNet [70] (f) CRF-RNN [77]

https://www.robots.ox.ac.uk/~aarnab/adversarial_robustness.html

Verification of Semantic
Segmentation Networks

th
2'" Segmentation without Attack 2" Pixel-class Reach Set 2" Verified Reach Set

Rf Nl unknown — 6 ma,a: — 50 Ae = 0. 003

2" Segmentation without Attack 2" Pixel-class Reach Set 2" Verified Reach Set

sssssss
un known
unkrown

Rf N2 unknown — 19 ma:r — 50 A = 0. 003

Tran, Hoang-Dung, et al. "Robustness verification of semantic segmentation neural networks
using relaxed reachability." International Conference on Computer Aided Verification, 2021.

Octatopes
Z={zeR"|z=c+Va,a e [-1,1P}
S={zecR"|z=c+Va,ac Cz <d}
O={zecR"|z=c+Va,ais UTVPI}

A unit two variable per inequality (UTVPI) constraint is of the
form aa; + ba; < d where the coefficients a,b € {—1,0,1}.

An octatope is a set of points defined with an affine
transformation from a p-dim octagon to an n-dim space

AL SR

xr € R"

ac RP r=c+ Vo

Summary

e There are still lots of research problems in NN verification.

e |'ve only focused on reachability approaches.

e See the other VNNCOMP tools in the report for lots of other
great ideas and up-to-date related work.

4 .5 Execution of ACASXu Neural Network 5-1, Property 3)
Random Executions
3.0 BN Exact Output Set
2.5
[
= Z07
8 Moo i
= Initial Points iyl Yl
.%1-5. . . | -_.-i::..
— t
=¥ :
1.0* 3
- s 5 e
i S e
| H_.-m'!'f'.'-'q:"-i"
0.0 s et
0 i T 3 1
_ Projection 1)

https://s3.amazonaws.com/media-p.slid.es/videos/1154051/6uOqX4K_/nn_anim_large.mp4

