
What Can we Prove About
Neural Networks?

AI Institute Seminar, Nov 2021

Formal Verification

In hardware circuits and software, formal verification
methods can prove correctness in all cases

Model checking analyzes all possible behaviors

Formal Verification in the Abstract

System Model:
Formal Property:

M

ϕ

Yes: Proof

Verification Algorithm
?M ⊨ ϕ

No: Example Error

What is Meant by
Neural Network Verification?

Input
Set

Output
Set

i ∈1 [0, 1]

i ∈2 [0, 1]

…

i ∈n [0, 1]

o ≥1 o2

o ≥1 o3

…

o ≥1 om

What Can we Prove About
Neural Networks?

Theoretically? Practically?

Verification Example 1: ACAS Xu
Air-to-Air Collision Avoidance System

https://s3.amazonaws.com/media-p.slid.es/videos/1154051/zIhdjWOj/acasxu_anim.mp4

ACAS Xu Collision Avoidance System [Katz '17]

Why NN?: Replace a several GB lookup
table with 45 neural networks
(compression)

Property : If the intruder is directly ahead and is moving
towards the ownship, a turn will be commanded.

Input:

Unsafe Output: Clear Weak-Left Clear Weak-Right
Clear Strong-Left Clear Strong-Right

φ3

1500 ≤ ρ ≤ 1800, ∣θ∣ ≤ 0.06,ψ ≥ 3.1, v ≥own 980, v ≥int 960

≤ ∧ ≤ ∧
≤ ∧ ≤

300 neurons in 6 layers

Inputs:
1.
2.
3.
4.
5.

vint

vown

ρ

ψ

θ

Outputs:
1. Clear
2. Weak-Left
3. Weak-Right
4. Strong-Left
5. Strong-Right

ACAS Xu Collision Avoidance System [Katz '17]

Verification Example 2: Proving the
Absence of Adversarial Examples

"Explaining and harnessing adversarial examples.", Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. 2014

Verification Competition

Reachability for Verification

Other Recent Results

Verification Competition

Reachability for Verification

Other Recent Results

Comparison of Tools

VNN-COMP 2021

Incorrect Results: Tools would lose points when results are
wrong. How to judge what's wrong?

Scoring: Different tools support different architectures or layer
types. What's the best way to perform scoring?

Overhead Measurement: Importing tensorflow / pytorch or
initializing a GPU can take a few seconds. Some easier
benchmarks could be checked in less than one second. How to
judge fairly?

Common Hardware: We wanted to run things on identical
hardware this year, what hardware to use?

Competition Challenges

and the winner is ...

But Reachability Methods Did Well Some
of the Categories...

Full VNN-COMP Results & Presentation:

https://docs.google.com/presentation/d/1
oM3NqqU03EUqgQVc3bGK2ENgHa57u-

W6Q63Vflkv000/edit?usp=sharing

https://docs.google.com/presentation/d/1oM3NqqU03EUqgQVc3bGK2ENgHa57u-W6Q63Vflkv000/edit?usp=sharing

Verification Competition

Reachability for Verification

Other Recent Results

Technical Methods

So how do you verify a
neural network anyway?

Neural Network Execution
Executing fully-connected neural networks uses two
operations:
(1) affine transformations, and (2) activation functions.

Input Point Output
Point

Two Set Operations Needed
Verification needs two types of set operations:
(1) affine transformations, and (2) activation functions.

Input Set Output Set

Affine Transform

An affine transformation is a function that transforms
an -dimensional point to a -dimensional point defined
using a matrix and vector .

f

n x q

A b

f(x) : R →n Rq

x↦ Ax+ b

If is a vector of outputs of some layer, then the inputs
to the next layer are , where is the weights matrix
and is the bias vector.

x n q

Ax+ b A

b

ReLU Activation Functions

RELU(x) = max(x, 0)

xi yi

y =i RELU(x)i

xi
uili

x
=
i

y i

yi

ReLU Activation Functions

RELU(x) = max(x, 0)

xi yi

y =i RELU(x)i

xi
uili

x
=
i

y i

yi

ReLU Activation Functions

RELU(x) = max(x, 0)

xi yi

y =i RELU(x)i

xi
uili

yi

ReLU Activation Functions

RELU(x) = max(x, 0)

xi yi

y =i RELU(x)i

xi
uili

x
=
i

y i

Set One
Set T

wo

yi

ReLU Activation Functions

RELU(x) = max(x, 0)

xi yi

y =i RELU(x)i

xi
uili

x
=
i

y i

Triangle Overapproximation
yi

ReLU Activation Functions

RELU(x) = max(x, 0)

xi yi

y =i RELU(x)i

xi
uili

x
=
i

y i
Zonotope

Overapproximation

yi

ReLU Activation Functions

RELU(x) = max(x, 0)

xi yi

y =i RELU(x)i

xi
uili

x
=
i

y i

Single Upper Bound /
Single Lower Bound
Overapproximation

yi

ReLU Activation Functions

RELU(x) = max(x, 0)

xi yi

y =i RELU(x)i

xi
uili

x
=
i

y i

Single Upper Bound /
Single Lower Bound
Overapproximation

yi

ReLU Activation Functions

RELU(x) = max(x, 0)

xi yi

y =i RELU(x)i

xi
uili

x
=
i

y i

Single Upper Bound /
Single Lower Bound
Overapproximation

yi

Zonotope and Star Set Intuition

Z = {x ∈ R ∣ x =n c+ V α,α ∈ [−1, 1] }p

S = {x ∈ R ∣ x =n c+ V α,α ∈ Cx ≤ d}

A zonotope is a set of points defined with an affine
transformation from a -dim unit box to an -dim spacep n

α ∈ Rp x ∈ Rnx = c+ V α

A linear star set is a set of points defined with an affine
transformation from a -dim polytope to an -dim

space
p n

Operations on Linear Star Set
⟨c,V ,P ⟩

Affine Transformation: matrix-matrix
multiplication to compute and . Result is

.

Optimization: put star set definition into a linear
program (LP) and minimize.

Intersection: given a halfspace ,
let . Result is .

c′ V ′

⟨c ,V ,P ⟩′ ′

H = {x ∣ Gx ≤ g}
P (α) =H GV α ≤ g −Gc ⟨c,V ,P ∧ P ⟩H

Numerical
Example

x1 y1

x2 y1

Rotate 45 degrees:

W =

b =

(cos()4πsin()4
π

−sin()4
π

cos()4
π)

(0, 0)T

Translate down:

W =

b =

(10
0
1)

(0,−)2
2

Initial Set:
x ∈1 [0.5, 1]
x ∈2 [0, 2]

ReLU

ReLU

ReLU

ReLU

Zonotope and Star Set
Z = {x ∈ R ∣ x =n c+ V α,α ∈ [−1, 1] }p

S = {x ∈ R ∣ x =n c+ V α,α ∈ Cx ≤ d}

A zonotope is a set of points defined with an affine
transformation from a -dim unit box to an -dim spacep n

α ∈ Rp x ∈ Rnx = c+ V α

A linear star set is a set of points defined with an affine
transformation from a -dim polytope to an -dim spacep n

In our example, . Using star sets, all
operations (intersection, optimization), are performed
in the input space.

p = n = 2

Notes on Zonotopes
Optimization on zonotopes is quick. Why? It becomes
an optimization problem over rectangles in the input

space, which can be done with a simple loop.

Optimization problem:
Maximize in this

direction
Subject to being inside

this rectangle

support_pt = []

for d in range(dims):
 if optimization_vec[d] > 0:
 dim_value = box[d].upper_bound
 else:
 dim_value = box[d].lower_bound

 support_pt.append(dim_value)

1
2
3
4
5
6
7
8
9

support
point

Initial Set:
x ∈1 [0.5, 1]
x ∈2 [0, 2]

x1 y1

x2

ReLU

ReLU

ReLU

ReLU

Input Space

y2

y1
ReLU

ReLU

ReLU

ReLU

Rotate 45 degrees:

W =

b =

(cos()4π
sin()4

π
−sin()4

π

cos()4
π)

(0, 0)T

Input Space Current Space

x1

x2 y2

x1 y1

x2

ReLU

ReLU

ReLU

ReLU

Input Space Current Space

min/max
direction

min/max
direction

optimization
direction gets

converted
to input space

support points
get converted to

current space

y2

x1 y1

x2

ReLU

ReLU

ReLU

ReLU

Input Space Current Space

Set is split
along x=0

constraint direction
gets converted
to input space

y2

x1 y1

x2

ReLU

ReLU

ReLU

ReLU

Input Space Current Space

Negative set
projected to x=0

y2

x1 y1

x2

ReLU

ReLU

ReLU

ReLU

Input Space Current Space

min/max
direction

No splitting is possible for second ReLU (along y=0)

min/max
dir #1

min/max
dir #2

optimization
direction gets

converted
to input space

support points
get converted to

current space

y2

x1 y1

x2 y2

ReLU

ReLU

ReLU

ReLU

Input Space Current Space

Translate down:

W =

b =

(10
0
1)

(0,−)2
2

min/max
direction

min/max
dir #1

min/max
dir #2

optimization
direction gets

converted
to input space

support points
get converted to

current space

No splitting is possible for first ReLU (along x=0)

x1

x2

ReLU

ReLU

ReLU

ReLU

Input Space Current Space

Translate down:

W =

b =

(10
0
1)

(0,−)2
2

min/max
direction

y1

y2

min/max
dir #1

min/max
dir #2

optimization
direction gets

converted
to input space

support points
get converted to

current space

Splitting is needed for second ReLU for blue set (along y=0)

x1

x2

ReLU

ReLU

ReLU

ReLU

Final Input Space Final Output Space

y1

y2

neg part
projected

to zero

Efficiency

How do you speed things up?

Ideas from two papers:
"Improved Geometric Path Enumeration for Verifying ReLU Neural
Networks", S. Bak, H.D Tran, K. Hobbs and T. T. Johnson, 32nd
International Conference on Computer-Aided Verification (CAV 2020)

"nnenum: Verification of ReLU Neural Networks with Optimized
Abstraction Refinement.", Bak, Stanley. NASA Formal Methods
Symposium (NFM 2021)

Two Paths to Improvement

Create
New

Algorithms

Optimize
Existing

Algorithms

“Engineering matters: you can’t properly evaluate a
technique without an efficient implementation.”

-Ken McMillan

Formal Methods

To improve performance, you must first find
the bottleneck of the algorithm.

Optimization:
Measure Don't Guess

The majority of the runtime is spent making
unnecessary copies.

To improve performance, you must first find
the bottleneck of the algorithm.

The majority of the runtime is spent making
unnecessary copies.

The majority of the runtime is spent optimizing
(solving LPs), to find the input bounds for each
neuron.

Optimization:
Measure Don't Guess

ReLU Activation Functions

RELU(x) = max(x, 0)

xi yi

y =i RELU(x)i

xi
uili

x
=
i

y i

yi

Two LPs are solved to find and for each neuron.li ui

LP Reductions

xi
uili

x
=
i

y i

How can we avoid LP solving?

In formal verification, achieving high performance
means using the appropriate level of abstraction

Idea: Use Zonotope overapproximations to prove
branching is possible without LP solving

Input Range from
Zonotope

Overapproximation

What if Zonotope doesn't help?

xi
uili

x
=
i

y i

Actually, we don't usually need to compute and ,
just to check if .

li ui

l <i 0 < ui

If > 0, we're done (single LP)!li

Also, if < 0, we're done... how to choose direction?ui

Idea: use a concrete execution of the NN

Concrete
Input

Zonotope Accuracy

LP solving is still the bottleneck, how can we do
better?

The zonotope prefilter works better if it's more
accurate. How can we increase it's accuracy?

Idea: Contract the domain of the zonotope
overapproximation when splitting.

Zonotope Domain Contraction

α ∈ Rp x ∈ Rnx = c+ V α

Black: Zonotope
Red: Star Set

Zonotope Domain Contraction

Black: Zonotope
Red: Star Set

Zonotope Domain Contraction

Black: Zonotope
Red: Star Set

Zonotope Domain Contraction

Black: Zonotope
Red: Star Set

Zonotope Domain Contraction

Zonotope Domain Contraction 2

Zonotope Domain Contraction 2

Zonotope Domain Contraction Approaches

Q: How often do we contract?
A: Every time we take an intersection.

Algorithms:
1. Single Loop Algorithm: does old box + single new constraint
reduce box bounds?

2. "Old LP" - Solve one LP for each lower and upper bound

3. "Witnesses" - Store min/max points, and then when adding
constraint check to see if they are removed

4. "New LP" - Optimize in multiple directions concurrently first,
to check if bounds have changed.

What about Overapproximation?

Since zonotopes are so much faster, why not consider all three
zonotopes at the same time (multi-abstraction analysis)?

How about try zonotopes first, and if that fails use star sets
(multi-round analysis)?

Exact vs Overapproximation
For each ReLU with and , you can choose between
splitting (exact) or single-set triangle overapproximation.

Neither is always best.

l <i 0 u >i 0

xi
uili

x
=
i

y i

Set One
Set T

wo
yi

xi
uili

x
=
i

y i

yi

Single Set Overapproximation

Idea: Combine splitting and overapproximation. Challenge: how
to choose?

In formal verification, achieving high performance means using
the appropriate level of abstraction.

CEGAR - Counter-example guided
abstraction refinement

The CEGAR approach is to overapproximate everywhere, and if
verification fails, go back and refine.

Where to refine? Simple approach: at the first neuron.

Subproblems are generally analyzed from more abstract to
more concrete.

Potential downside: overapproximation analysis, which often
fails, can take a long time.

EGO - Execution-Guided
Overapproximation

The EGO approach keep splitting until one branch of the
search tree is verified.

Then, overapproximations are done from the tips of the tree,
rather than the root.

Subproblems are generally analyzed from more concrete to
more abstract.

CEGAR vs EGO Exploration Order

Verification Competition

Reachability for Verification

Other Recent Results

Larger Perception NNs

VGG-16
(>10 million neurons)

Bell
Pepper?

See the CAV 2020 paper:
"Verification of Deep Convolutional Neural Networks Using ImageStars"

H.D Tran, S. Bak, W. Xiang and T. T. Johnson

Image Star

Linear Layer examples (from onnx): 'Add', 'AveragePool',
'Constant', 'Concat', 'Conv' (diluted convolution, transpose
convolution), 'Flatten', 'Gather', 'Gemm', 'MatMul', 'Mul',
'Reshape', 'Shape', 'Sub', 'Unsqueeze'

Nonlinear layers: max-pooling, atan, tanh, sigmoid,
softmax (but can usually ignore)

Another Problem: Larger
Perception NNs

VGG-16
(>10 million neurons)

Bell
Pepper?

See our CAV 2020 paper:
"Verification of Deep Convolutional Neural Networks Using ImageStars"

H.D Tran, S. Bak, W. Xiang and T. T. Johnson

Numeric Issue: L-inf spec will require 224*224*3=~150k
generators, first layer of VGG16 is 224*224*64=~3m,

single-precision floats need 4 bytes per number

Storage space needed at first layer is ~1.9TB
and then you can start to analyze if splitting is possible

Closed-Loop Analysis

Physical
System

Closed-Loop Analysis with Noise

Black-Box
Physical
System

Closed-Loop Analysis

Decision Points

From black-box analysis
with local numerical

linearization

Decision Points

Best Convex Overapproximation?
For each ReLU with and , you can choose between
splitting (exact) or single-set triangle overapproximation.

l <i 0 u >i 0

xi
uili

x
=
i

y i

Set One
Set T

wo
yi

xi
uili

x
=
i

y i

yi

Single Set Overapproximation

Triangle overapproximation is only tight with respect to a single
neuron. With multiple neurons it can be conservative.

Best Convex Overapproximation?

Semantic Segmentation Networks

https://www.robots.ox.ac.uk/~aarnab/adversarial_robustness.html

Verification of Semantic
Segmentation Networks

Tran, Hoang-Dung, et al. "Robustness verification of semantic segmentation neural networks
using relaxed reachability." International Conference on Computer Aided Verification, 2021.

Octatopes
Z = {x ∈ R ∣ x =n c+ V α,α ∈ [−1, 1] }p

S = {x ∈ R ∣ x =n c+ V α,α ∈ Cx ≤ d}

A unit two variable per inequality (UTVPI) constraint is of the
form where the coefficients .aα +i bα ≤j d a, b ∈ {−1, 0, 1}

α ∈ Rp x ∈ Rnx = c+ V α

O = {x ∈ R ∣ x =n c+ V α,α is UTVPI}

An octatope is a set of points defined with an affine
transformation from a -dim octagon to an -dim spacep n

Summary

There are still lots of research problems in NN verification.
I've only focused on reachability approaches.
See the other VNNCOMP tools in the report for lots of other
great ideas and up-to-date related work.

https://s3.amazonaws.com/media-p.slid.es/videos/1154051/6uOqX4K_/nn_anim_large.mp4

